Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import gradio as gr | |
| checkpoint = "WillHeld/soft-raccoon" | |
| device = "cuda" | |
| tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
| model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) | |
| def predict(message, history): | |
| history.append({"role": "user", "content": message}) | |
| input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True) | |
| inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
| outputs = model.generate(inputs, max_new_tokens=1024, temperature=0.7, top_p=0.9, do_sample=True) | |
| decoded = tokenizer.decode(outputs[0]) | |
| response = decoded.split("<|start_header_id|>assistant<|end_header_id|>\n\n")[-1] | |
| return response | |
| demo = gr.ChatInterface(predict, type="messages") | |
| demo.launch() |