Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Delete app.py
Browse files
    	
        app.py
    DELETED
    
    | @@ -1,177 +0,0 @@ | |
| 1 | 
            -
            import torch
         | 
| 2 | 
            -
            from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
         | 
| 3 | 
            -
            from diffusers.utils import export_to_video
         | 
| 4 | 
            -
            from transformers import CLIPVisionModel
         | 
| 5 | 
            -
            import gradio as gr
         | 
| 6 | 
            -
            import tempfile
         | 
| 7 | 
            -
            import spaces
         | 
| 8 | 
            -
            from huggingface_hub import hf_hub_download
         | 
| 9 | 
            -
            import numpy as np
         | 
| 10 | 
            -
            from PIL import Image
         | 
| 11 | 
            -
            import random
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
         | 
| 14 | 
            -
            LORA_REPO_ID = "Kijai/WanVideo_comfy"
         | 
| 15 | 
            -
            LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
         | 
| 16 | 
            -
             | 
| 17 | 
            -
            image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
         | 
| 18 | 
            -
            vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
         | 
| 19 | 
            -
            pipe = WanImageToVideoPipeline.from_pretrained(
         | 
| 20 | 
            -
                MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
         | 
| 21 | 
            -
            )
         | 
| 22 | 
            -
            pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
         | 
| 23 | 
            -
            pipe.to("cuda")
         | 
| 24 | 
            -
             | 
| 25 | 
            -
            causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
         | 
| 26 | 
            -
            pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
         | 
| 27 | 
            -
            pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
         | 
| 28 | 
            -
            pipe.fuse_lora()
         | 
| 29 | 
            -
             | 
| 30 | 
            -
            MOD_VALUE = 32
         | 
| 31 | 
            -
            DEFAULT_H_SLIDER_VALUE = 640
         | 
| 32 | 
            -
            DEFAULT_W_SLIDER_VALUE = 1024
         | 
| 33 | 
            -
            NEW_FORMULA_MAX_AREA = 640.0 * 1024.0 
         | 
| 34 | 
            -
             | 
| 35 | 
            -
            SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
         | 
| 36 | 
            -
            SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
         | 
| 37 | 
            -
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 38 | 
            -
             | 
| 39 | 
            -
            FIXED_FPS = 24
         | 
| 40 | 
            -
            MIN_FRAMES_MODEL = 8
         | 
| 41 | 
            -
            MAX_FRAMES_MODEL = 81 
         | 
| 42 | 
            -
             | 
| 43 | 
            -
            default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
         | 
| 44 | 
            -
            default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
         | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
            def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
         | 
| 48 | 
            -
                                             min_slider_h, max_slider_h,
         | 
| 49 | 
            -
                                             min_slider_w, max_slider_w,
         | 
| 50 | 
            -
                                             default_h, default_w):
         | 
| 51 | 
            -
                orig_w, orig_h = pil_image.size
         | 
| 52 | 
            -
                if orig_w <= 0 or orig_h <= 0:
         | 
| 53 | 
            -
                    return default_h, default_w
         | 
| 54 | 
            -
             | 
| 55 | 
            -
                aspect_ratio = orig_h / orig_w
         | 
| 56 | 
            -
                
         | 
| 57 | 
            -
                calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
         | 
| 58 | 
            -
                calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
         | 
| 59 | 
            -
             | 
| 60 | 
            -
                calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
         | 
| 61 | 
            -
                calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
         | 
| 62 | 
            -
                
         | 
| 63 | 
            -
                new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
         | 
| 64 | 
            -
                new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
         | 
| 65 | 
            -
                
         | 
| 66 | 
            -
                return new_h, new_w
         | 
| 67 | 
            -
             | 
| 68 | 
            -
            def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
         | 
| 69 | 
            -
                if uploaded_pil_image is None:
         | 
| 70 | 
            -
                    return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
         | 
| 71 | 
            -
                try:
         | 
| 72 | 
            -
                    new_h, new_w = _calculate_new_dimensions_wan(
         | 
| 73 | 
            -
                        uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
         | 
| 74 | 
            -
                        SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
         | 
| 75 | 
            -
                        DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
         | 
| 76 | 
            -
                    )
         | 
| 77 | 
            -
                    return gr.update(value=new_h), gr.update(value=new_w)
         | 
| 78 | 
            -
                except Exception as e:
         | 
| 79 | 
            -
                    gr.Warning("Error attempting to calculate new dimensions")
         | 
| 80 | 
            -
                    return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
         | 
| 81 | 
            -
             | 
| 82 | 
            -
            def get_duration(input_image, prompt, height, width, 
         | 
| 83 | 
            -
                               negative_prompt, duration_seconds,
         | 
| 84 | 
            -
                               guidance_scale, steps,
         | 
| 85 | 
            -
                               seed, randomize_seed, 
         | 
| 86 | 
            -
                               progress):
         | 
| 87 | 
            -
                if steps > 4 and duration_seconds > 2:
         | 
| 88 | 
            -
                    return 90
         | 
| 89 | 
            -
                elif steps > 4 or duration_seconds > 2:
         | 
| 90 | 
            -
                    return 75
         | 
| 91 | 
            -
                else:
         | 
| 92 | 
            -
                    return 60
         | 
| 93 | 
            -
             | 
| 94 | 
            -
            @spaces.GPU(duration=get_duration)
         | 
| 95 | 
            -
            def generate_video(input_image, prompt, height, width, 
         | 
| 96 | 
            -
                               negative_prompt=default_negative_prompt, duration_seconds = 2,
         | 
| 97 | 
            -
                               guidance_scale = 1, steps = 4,
         | 
| 98 | 
            -
                               seed = 42, randomize_seed = False, 
         | 
| 99 | 
            -
                               progress=gr.Progress(track_tqdm=True)):
         | 
| 100 | 
            -
                
         | 
| 101 | 
            -
                if input_image is None:
         | 
| 102 | 
            -
                    raise gr.Error("Please upload an input image.")
         | 
| 103 | 
            -
             | 
| 104 | 
            -
                target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
         | 
| 105 | 
            -
                target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
         | 
| 106 | 
            -
                
         | 
| 107 | 
            -
                num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
         | 
| 108 | 
            -
                
         | 
| 109 | 
            -
                current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
         | 
| 110 | 
            -
             | 
| 111 | 
            -
                resized_image = input_image.resize((target_w, target_h))
         | 
| 112 | 
            -
             | 
| 113 | 
            -
                with torch.inference_mode():
         | 
| 114 | 
            -
                    output_frames_list = pipe(
         | 
| 115 | 
            -
                        image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
         | 
| 116 | 
            -
                        height=target_h, width=target_w, num_frames=num_frames,
         | 
| 117 | 
            -
                        guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
         | 
| 118 | 
            -
                        generator=torch.Generator(device="cuda").manual_seed(current_seed)
         | 
| 119 | 
            -
                    ).frames[0]
         | 
| 120 | 
            -
             | 
| 121 | 
            -
                with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
         | 
| 122 | 
            -
                    video_path = tmpfile.name
         | 
| 123 | 
            -
                export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
         | 
| 124 | 
            -
                return video_path, current_seed
         | 
| 125 | 
            -
             | 
| 126 | 
            -
            with gr.Blocks() as demo:
         | 
| 127 | 
            -
                gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
         | 
| 128 | 
            -
                gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
         | 
| 129 | 
            -
                with gr.Row():
         | 
| 130 | 
            -
                    with gr.Column():
         | 
| 131 | 
            -
                        input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
         | 
| 132 | 
            -
                        prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
         | 
| 133 | 
            -
                        duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
         | 
| 134 | 
            -
                        
         | 
| 135 | 
            -
                        with gr.Accordion("Advanced Settings", open=False):
         | 
| 136 | 
            -
                            negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
         | 
| 137 | 
            -
                            seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
         | 
| 138 | 
            -
                            randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
         | 
| 139 | 
            -
                            with gr.Row():
         | 
| 140 | 
            -
                                height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
         | 
| 141 | 
            -
                                width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
         | 
| 142 | 
            -
                            steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") 
         | 
| 143 | 
            -
                            guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
         | 
| 144 | 
            -
             | 
| 145 | 
            -
                        generate_button = gr.Button("Generate Video", variant="primary")
         | 
| 146 | 
            -
                    with gr.Column():
         | 
| 147 | 
            -
                        video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
         | 
| 148 | 
            -
             | 
| 149 | 
            -
                input_image_component.upload(
         | 
| 150 | 
            -
                    fn=handle_image_upload_for_dims_wan,
         | 
| 151 | 
            -
                    inputs=[input_image_component, height_input, width_input],
         | 
| 152 | 
            -
                    outputs=[height_input, width_input]
         | 
| 153 | 
            -
                )
         | 
| 154 | 
            -
                
         | 
| 155 | 
            -
                input_image_component.clear( 
         | 
| 156 | 
            -
                    fn=handle_image_upload_for_dims_wan,
         | 
| 157 | 
            -
                    inputs=[input_image_component, height_input, width_input],
         | 
| 158 | 
            -
                    outputs=[height_input, width_input]
         | 
| 159 | 
            -
                )
         | 
| 160 | 
            -
                
         | 
| 161 | 
            -
                ui_inputs = [
         | 
| 162 | 
            -
                    input_image_component, prompt_input, height_input, width_input,
         | 
| 163 | 
            -
                    negative_prompt_input, duration_seconds_input,
         | 
| 164 | 
            -
                    guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
         | 
| 165 | 
            -
                ]
         | 
| 166 | 
            -
                generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
         | 
| 167 | 
            -
             | 
| 168 | 
            -
                gr.Examples(
         | 
| 169 | 
            -
                    examples=[ 
         | 
| 170 | 
            -
                        ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
         | 
| 171 | 
            -
                        ["forg.jpg", "the frog jumps around", 448, 832],
         | 
| 172 | 
            -
                    ],
         | 
| 173 | 
            -
                    inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
         | 
| 174 | 
            -
                )
         | 
| 175 | 
            -
             | 
| 176 | 
            -
            if __name__ == "__main__":
         | 
| 177 | 
            -
                demo.queue().launch()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
 
			
