Wills17 commited on
Commit
c3e00b4
·
verified ·
1 Parent(s): 76c79b2

Delete models

Browse files
models/paraphrase-MiniLM-L3-v2/1_Pooling/config.json DELETED
@@ -1,10 +0,0 @@
1
- {
2
- "word_embedding_dimension": 384,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
- }
 
 
 
 
 
 
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/README.md DELETED
@@ -1,114 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- library_name: sentence-transformers
4
- tags:
5
- - sentence-transformers
6
- - feature-extraction
7
- - sentence-similarity
8
- - transformers
9
- datasets:
10
- - flax-sentence-embeddings/stackexchange_xml
11
- - s2orc
12
- - ms_marco
13
- - wiki_atomic_edits
14
- - snli
15
- - multi_nli
16
- - embedding-data/altlex
17
- - embedding-data/simple-wiki
18
- - embedding-data/flickr30k-captions
19
- - embedding-data/coco_captions
20
- - embedding-data/sentence-compression
21
- - embedding-data/QQP
22
- - yahoo_answers_topics
23
- pipeline_tag: sentence-similarity
24
- ---
25
-
26
- # sentence-transformers/paraphrase-MiniLM-L3-v2
27
-
28
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
29
-
30
-
31
-
32
- ## Usage (Sentence-Transformers)
33
-
34
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
35
-
36
- ```
37
- pip install -U sentence-transformers
38
- ```
39
-
40
- Then you can use the model like this:
41
-
42
- ```python
43
- from sentence_transformers import SentenceTransformer
44
- sentences = ["This is an example sentence", "Each sentence is converted"]
45
-
46
- model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L3-v2')
47
- embeddings = model.encode(sentences)
48
- print(embeddings)
49
- ```
50
-
51
-
52
-
53
- ## Usage (HuggingFace Transformers)
54
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
55
-
56
- ```python
57
- from transformers import AutoTokenizer, AutoModel
58
- import torch
59
-
60
-
61
- #Mean Pooling - Take attention mask into account for correct averaging
62
- def mean_pooling(model_output, attention_mask):
63
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
64
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
65
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
66
-
67
-
68
- # Sentences we want sentence embeddings for
69
- sentences = ['This is an example sentence', 'Each sentence is converted']
70
-
71
- # Load model from HuggingFace Hub
72
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2')
73
- model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2')
74
-
75
- # Tokenize sentences
76
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
77
-
78
- # Compute token embeddings
79
- with torch.no_grad():
80
- model_output = model(**encoded_input)
81
-
82
- # Perform pooling. In this case, max pooling.
83
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
84
-
85
- print("Sentence embeddings:")
86
- print(sentence_embeddings)
87
- ```
88
-
89
-
90
-
91
- ## Full Model Architecture
92
- ```
93
- SentenceTransformer(
94
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
95
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
96
- )
97
- ```
98
-
99
- ## Citing & Authors
100
-
101
- This model was trained by [sentence-transformers](https://www.sbert.net/).
102
-
103
- If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
104
- ```bibtex
105
- @inproceedings{reimers-2019-sentence-bert,
106
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
107
- author = "Reimers, Nils and Gurevych, Iryna",
108
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
109
- month = "11",
110
- year = "2019",
111
- publisher = "Association for Computational Linguistics",
112
- url = "http://arxiv.org/abs/1908.10084",
113
- }
114
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/config.json DELETED
@@ -1,25 +0,0 @@
1
- {
2
- "architectures": [
3
- "BertModel"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "classifier_dropout": null,
7
- "dtype": "float32",
8
- "gradient_checkpointing": false,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 384,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 1536,
14
- "layer_norm_eps": 1e-12,
15
- "max_position_embeddings": 512,
16
- "model_type": "bert",
17
- "num_attention_heads": 12,
18
- "num_hidden_layers": 3,
19
- "pad_token_id": 0,
20
- "position_embedding_type": "absolute",
21
- "transformers_version": "4.56.2",
22
- "type_vocab_size": 2,
23
- "use_cache": true,
24
- "vocab_size": 30522
25
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/config_sentence_transformers.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "5.1.1",
4
- "transformers": "4.56.2",
5
- "pytorch": "2.8.0+cpu"
6
- },
7
- "model_type": "SentenceTransformer",
8
- "prompts": {
9
- "query": "",
10
- "document": ""
11
- },
12
- "default_prompt_name": null,
13
- "similarity_fn_name": "cosine"
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f59d73a201e0f6092d7e88ac8589f886a946725cff96d0250231d7e272e63071
3
- size 69565312
 
 
 
 
models/paraphrase-MiniLM-L3-v2/modules.json DELETED
@@ -1,14 +0,0 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/sentence_bert_config.json DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "max_seq_length": 128,
3
- "do_lower_case": false
4
- }
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/special_tokens_map.json DELETED
@@ -1,37 +0,0 @@
1
- {
2
- "cls_token": {
3
- "content": "[CLS]",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "mask_token": {
10
- "content": "[MASK]",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "[PAD]",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "sep_token": {
24
- "content": "[SEP]",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "unk_token": {
31
- "content": "[UNK]",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- }
37
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
models/paraphrase-MiniLM-L3-v2/tokenizer_config.json DELETED
@@ -1,65 +0,0 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "[PAD]",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "100": {
12
- "content": "[UNK]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "101": {
20
- "content": "[CLS]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "102": {
28
- "content": "[SEP]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "103": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "clean_up_tokenization_spaces": false,
45
- "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
- "do_lower_case": true,
48
- "extra_special_tokens": {},
49
- "mask_token": "[MASK]",
50
- "max_length": 128,
51
- "model_max_length": 128,
52
- "never_split": null,
53
- "pad_to_multiple_of": null,
54
- "pad_token": "[PAD]",
55
- "pad_token_type_id": 0,
56
- "padding_side": "right",
57
- "sep_token": "[SEP]",
58
- "stride": 0,
59
- "strip_accents": null,
60
- "tokenize_chinese_chars": true,
61
- "tokenizer_class": "BertTokenizer",
62
- "truncation_side": "right",
63
- "truncation_strategy": "longest_first",
64
- "unk_token": "[UNK]"
65
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/paraphrase-MiniLM-L3-v2/vocab.txt DELETED
The diff for this file is too large to render. See raw diff