Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 26,633 Bytes
			
			| 4910a8a 36c3710 4910a8a 8b424c5 4910a8a | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | # Copyright (c) 2025 Fudan University. All rights reserved.
print("Starting app.py...")
import dataclasses
import json
import os
from pathlib import Path
from typing import List, Literal, Optional
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw
from withanyone.flux.pipeline import WithAnyonePipeline
from util import extract_moref, face_preserving_resize
import insightface
token = os.getenv("HF_KEY")
import subprocess
subprocess.run(["huggingface-cli", "login", "--token", token])
def captioner(prompt: str, num_person = 1) -> List[List[float]]:
    # use random choose for testing
    # within 512
    if num_person == 1:
        bbox_choices = [
            # expanded, centered and quadrant placements
            [96, 96, 288, 288],
            [128, 128, 320, 320],
            [160, 96, 352, 288],
            [96, 160, 288, 352],
            [208, 96, 400, 288],
            [96, 208, 288, 400],
            [192, 160, 368, 336],
            [64, 128, 224, 320],
            [288, 128, 448, 320],
            [128, 256, 320, 448],
            [80, 80, 240, 272],
            [196, 196, 380, 380],
            # originals
            [100, 100, 300, 300],
            [150, 50, 450, 350],
            [200, 100, 500, 400],
            [250, 150, 512, 450],
        ]
        return [bbox_choices[np.random.randint(0, len(bbox_choices))]]
    elif num_person == 2:
        # realistic side-by-side rows (no vertical stacks or diagonals)
        bbox_choices = [
            [[64, 112, 224, 304], [288, 112, 448, 304]],
            [[48, 128, 208, 320], [304, 128, 464, 320]],
            [[32, 144, 192, 336], [320, 144, 480, 336]],
            [[80, 96, 240, 288], [272, 96, 432, 288]],
            [[80, 160, 240, 352], [272, 160, 432, 352]],
            [[64, 128, 240, 336], [272, 144, 432, 320]],  # slight stagger, same row
            [[96, 160, 256, 352], [288, 160, 448, 352]],
            [[64, 192, 224, 384], [288, 192, 448, 384]],  # lower row
            [[16, 128, 176, 320], [336, 128, 496, 320]],  # near edges
            [[48, 120, 232, 328], [280, 120, 464, 328]],
            [[96, 160, 240, 336], [272, 160, 416, 336]],  # tighter faces
            [[72, 136, 232, 328], [280, 152, 440, 344]],  # small vertical offset
            [[48, 120, 224, 344], [288, 144, 448, 336]],  # asymmetric sizes
            [[80, 224, 240, 416], [272, 224, 432, 416]],  # bottom row
            [[80, 64, 240, 256], [272, 64, 432, 256]],    # top row
            [[96, 176, 256, 368], [288, 176, 448, 368]],
        ]
        return bbox_choices[np.random.randint(0, len(bbox_choices))]
    
    elif num_person == 3:
        # Non-overlapping 3-person layouts within 512x512
        bbox_choices = [
            [[20, 140, 150, 360], [180, 120, 330, 360], [360, 130, 500, 360]],
            [[30, 100, 160, 300], [190, 90, 320, 290], [350, 110, 480, 310]],
            [[40, 180, 150, 330], [200, 180, 310, 330], [360, 180, 470, 330]],
            [[60, 120, 170, 300], [210, 110, 320, 290], [350, 140, 480, 320]],
            [[50, 80, 170, 250], [200, 130, 320, 300], [350, 80, 480, 250]],
            [[40, 260, 170, 480], [190, 60, 320, 240], [350, 260, 490, 480]],
            [[30, 120, 150, 320], [200, 140, 320, 340], [360, 160, 500, 360]],
            [[80, 140, 200, 300], [220, 80, 350, 260], [370, 160, 500, 320]],
        ]
        return bbox_choices[np.random.randint(0, len(bbox_choices))]
    elif num_person == 4:
        # Non-overlapping 4-person layouts within 512x512
        bbox_choices = [
            [[20, 100, 120, 240], [140, 100, 240, 240], [260, 100, 360, 240], [380, 100, 480, 240]],
            [[40, 60, 200, 260], [220, 60, 380, 260], [40, 280, 200, 480], [220, 280, 380, 480]],
            [[180, 30, 330, 170], [30, 220, 150, 380], [200, 220, 320, 380], [360, 220, 490, 380]],
            [[30, 60, 140, 200], [370, 60, 480, 200], [30, 320, 140, 460], [370, 320, 480, 460]],
            [[20, 120, 120, 380], [140, 100, 240, 360], [260, 120, 360, 380], [380, 100, 480, 360]],
            [[30, 80, 150, 240], [180, 120, 300, 280], [330, 80, 450, 240], [200, 300, 320, 460]],
            [[30, 140, 110, 330], [140, 140, 220, 330], [250, 140, 330, 330], [370, 140, 450, 330]],
            [[40, 80, 150, 240], [40, 260, 150, 420], [200, 80, 310, 240], [370, 80, 480, 240]],
        ]
        return bbox_choices[np.random.randint(0, len(bbox_choices))]
        
class FaceExtractor:
    def __init__(self, model_path="./"):
        try:
            self.model = insightface.app.FaceAnalysis(name = "antelopev2", root=model_path, providers=['CUDAExecutionProvider'])
        except Exception as e:
            print(f"Error loading insightface model: {e}. There might be an issue with the directory structure. Trying to fix it...")
            antelopev2_nested_path = os.path.join(model_path, "models", "antelopev2", "antelopev2")
            print(f"Checking for nested path: {antelopev2_nested_path}")
            if os.path.exists(antelopev2_nested_path):
                import subprocess
                print("Detected nested antelopev2 directory, fixing directory structure...")
                # Change to the model_path directory to execute commands
                current_dir = os.getcwd()
                os.chdir(model_path)
                # Execute the commands as specified by the user
                subprocess.run(["mv", "models/antelopev2/", "models/antelopev2_"])
                subprocess.run(["mv", "models/antelopev2_/antelopev2/", "models/antelopev2/"])
                # Return to the original directory
                os.chdir(current_dir)
                print("Directory structure fixed.")
        self.model = insightface.app.FaceAnalysis(name="antelopev2", root="./")
        self.model.prepare(ctx_id=0)
    def extract(self, image: Image.Image):
        """Extract single face and embedding from an image"""
        image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        res = self.model.get(image_np)
        if len(res) == 0:
            return None, None
        res = res[0]
        bbox = res["bbox"]
        moref = extract_moref(image, {"bboxes": [bbox]}, 1)
        return moref[0], res["embedding"]
    def extract_refs(self, image: Image.Image):
        """Extract multiple faces and embeddings from an image"""
        image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        res = self.model.get(image_np)
        if len(res) == 0:
            return None, None, None
        ref_imgs = []
        arcface_embeddings = []
        bboxes = []
        for r in res:
            bbox = r["bbox"]
            bboxes.append(bbox)
            moref = extract_moref(image, {"bboxes": [bbox]}, 1)
            ref_imgs.append(moref[0])
            arcface_embeddings.append(r["embedding"])
        
        # Convert bboxes to the correct format
        new_img, new_bboxes = face_preserving_resize(image, bboxes, 512)
        return ref_imgs, arcface_embeddings, new_bboxes, new_img
def resize_bbox(bbox, ori_width, ori_height, new_width, new_height):
    """Resize bounding box coordinates while preserving aspect ratio"""
    x1, y1, x2, y2 = bbox
    
    # Calculate scaling factors
    width_scale = new_width / ori_width
    height_scale = new_height / ori_height
    
    # Use minimum scaling factor to preserve aspect ratio
    min_scale = min(width_scale, height_scale)
    
    # Calculate offsets for centering the scaled box
    width_offset = (new_width - ori_width * min_scale) / 2
    height_offset = (new_height - ori_height * min_scale) / 2
    
    # Scale and adjust coordinates
    new_x1 = int(x1 * min_scale + width_offset)
    new_y1 = int(y1 * min_scale + height_offset)
    new_x2 = int(x2 * min_scale + width_offset)
    new_y2 = int(y2 * min_scale + height_offset)
    
    return [new_x1, new_y1, new_x2, new_y2]
def draw_bboxes_on_image(image, bboxes):
    """Draw bounding boxes on image for visualization"""
    if bboxes is None:
        return image
    
    # Create a copy to draw on
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)
    
    # Draw each bbox with a different color
    colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0)]
    
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        x1, y1, x2, y2 = [int(coord) for coord in bbox]
        # Draw rectangle
        draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
        # Draw label
        draw.text((x1, y1-15), f"Face {i+1}", fill=color)
    
    return img_draw
def create_demo(
    model_type: str = "flux-dev",
    ipa_path: str = "./ckpt/ipa.safetensors",
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    offload: bool = False,
    lora_rank: int = 64,
    additional_lora_ckpt: Optional[str] = None,
    lora_scale: float = 1.0,
    clip_path: str = "openai/clip-vit-large-patch14",
    t5_path: str = "xlabs-ai/xflux_text_encoders",
    flux_path: str = "black-forest-labs/FLUX.1-dev",
):
    
    face_extractor = FaceExtractor()
    # Initialize pipeline and face extractor
    pipeline = WithAnyonePipeline(
        model_type,
        ipa_path,
        device,
        offload,
        only_lora=True,
        no_lora=True,
        lora_rank=lora_rank,
        additional_lora_ckpt=additional_lora_ckpt,
        lora_weight=lora_scale,
        face_extractor=face_extractor,
        clip_path=clip_path,
        t5_path=t5_path,
        flux_path=flux_path,
    )
    
    
    
    # Add project badges
    # badges_text = r"""
    # <div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
    # <a href="https://github.com/bytedance/UNO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/UNO"></a> 
    # <a href="https://bytedance.github.io/UNO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UNO-yellow"></a> 
    # <a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-UNO-b31b1b.svg"></a>
    # </div>
    # """.strip()
    def parse_bboxes(bbox_text):
        """Parse bounding box text input"""
        if not bbox_text or bbox_text.strip() == "":
            return None
        
        try:
            bboxes = []
            lines = bbox_text.strip().split("\n")
            for line in lines:
                if not line.strip():
                    continue
                coords = [float(x) for x in line.strip().split(",")]
                if len(coords) != 4:
                    raise ValueError(f"Each bbox must have 4 coordinates (x1,y1,x2,y2), got: {line}")
                bboxes.append(coords)
            # print(f"\nParsed bboxes: {bboxes}\n")
            return bboxes
        except Exception as e:
            raise gr.Error(f"Invalid bbox format: {e}")
    
    def extract_from_multi_person(multi_person_image):
        """Extract references and bboxes from a multi-person image"""
        if multi_person_image is None:
            return None, None, None, None
        
        # Convert from numpy to PIL if needed
        if isinstance(multi_person_image, np.ndarray):
            multi_person_image = Image.fromarray(multi_person_image)
        
        ref_imgs, arcface_embeddings, bboxes, new_img = face_extractor.extract_refs(multi_person_image)
        
        if ref_imgs is None or len(ref_imgs) == 0:
            raise gr.Error("No faces detected in the multi-person image")
        
        # Limit to max 4 faces
        ref_imgs = ref_imgs[:4]
        arcface_embeddings = arcface_embeddings[:4]
        bboxes = bboxes[:4]
        
        # Create visualization with bboxes
        viz_image = draw_bboxes_on_image(new_img, bboxes)
        
        # Format bboxes as string for display
        bbox_text = "\n".join([f"{bbox[0]:.1f},{bbox[1]:.1f},{bbox[2]:.1f},{bbox[3]:.1f}" for bbox in bboxes])
        
        return ref_imgs, arcface_embeddings, bboxes, viz_image
    
    def process_and_generate(
        prompt, 
        width, height, 
        guidance, num_steps, seed,
        ref_img1, ref_img2, ref_img3, ref_img4,
        manual_bboxes_text, 
        multi_person_image,
        # use_text_prompt,
        # id_weight,
        siglip_weight
    ):
        # Collect and validate reference images
        ref_images = [img for img in [ref_img1, ref_img2, ref_img3, ref_img4] if img is not None]
        
        if not ref_images:
            raise gr.Error("At least one reference image is required")
        
        # Process reference images to extract face and embeddings
        ref_imgs = []
        arcface_embeddings = []
        
        # Modified bbox handling logic
        if multi_person_image is not None:
            # Extract from multi-person image mode
            extracted_refs, extracted_embeddings, bboxes_, _ = extract_from_multi_person(multi_person_image)
            if extracted_refs is None:
                raise gr.Error("Failed to extract faces from the multi-person image")
            
            print("bboxes from multi-person image:", bboxes_)
            # need to resize bboxes from 512 512 to width height
            bboxes_ = [resize_bbox(bbox, 512, 512, width, height) for bbox in bboxes_]
            
        else:
            # Parse manual bboxes
            bboxes_ = parse_bboxes(manual_bboxes_text)
            
            # If no manual bboxes provided, use automatic captioner
            if bboxes_ is None:
                print("No multi-person image or manual bboxes provided. Using automatic captioner.")
                # Generate automatic bboxes based on image dimensions
                bboxes__ = captioner(prompt, num_person=len(ref_images))
                # resize to width height
                bboxes_ = [resize_bbox(bbox, 512, 512, width, height) for bbox in bboxes__]
                print("Automatically generated bboxes:", bboxes_)
        
        bboxes = [bboxes_]  # 伪装batch输入
        # else:
            # Manual mode: process each reference image
        for img in ref_images:
            if isinstance(img, np.ndarray):
                img = Image.fromarray(img)
            
            ref_img, embedding = face_extractor.extract(img)
            if ref_img is None or embedding is None:
                raise gr.Error("Failed to extract face from one of the reference images")
            
            ref_imgs.append(ref_img)
            arcface_embeddings.append(embedding)
        
        # pad arcface_embeddings to 4 if less than 4
        # while len(arcface_embeddings) < 4:
        #     arcface_embeddings.append(np.zeros_like(arcface_embeddings[0]))
            
            
        if bboxes is None:
            raise gr.Error("Either provide manual bboxes or a multi-person image for bbox extraction")
        
        if len(bboxes[0]) != len(ref_imgs):
            raise gr.Error(f"Number of bboxes ({len(bboxes[0])}) must match number of reference images ({len(ref_imgs)})")
        
        # Convert arcface embeddings to tensor
        arcface_embeddings = [torch.tensor(embedding) for embedding in arcface_embeddings]
        arcface_embeddings = torch.stack(arcface_embeddings).to(device)
        
        # Generate image
        final_prompt = prompt 
        print(f"Generating image of size {width}x{height} with bboxes: {bboxes} ")
        if seed < 0:
            seed = np.random.randint(0, 1000000)
        
        image_gen = pipeline(
            prompt=final_prompt,
            width=width,
            height=height,
            guidance=guidance,
            num_steps=num_steps,
            seed=seed if seed > 0 else None,
            ref_imgs=ref_imgs,
            arcface_embeddings=arcface_embeddings,
            bboxes=bboxes,
            id_weight = 1 - siglip_weight,
            siglip_weight=siglip_weight,
        )
        
        # Save temp file for download
        temp_path = "temp_generated.png"
        image_gen.save(temp_path)
        # draw bboxes on the generated image for debug
        debug_face = draw_bboxes_on_image(image_gen, bboxes[0])
        
        return image_gen, debug_face, temp_path
    
    def update_bbox_display(multi_person_image):
        if multi_person_image is None:
            return None, gr.update(visible=True), gr.update(visible=False)
        
        try:
            _, _, _, viz_image = extract_from_multi_person(multi_person_image)
            return viz_image, gr.update(visible=False), gr.update(visible=True)
        except Exception as e:
            return None, gr.update(visible=True), gr.update(visible=False)
    # Create Gradio interface
    with gr.Blocks() as demo:
        gr.Markdown("# WithAnyone Demo")
        # gr.Markdown(badges_text)
        
        with gr.Row():
            
            with gr.Column():
                # Input controls
                generate_btn = gr.Button("Generate", variant="primary")
                with gr.Row():
                    with gr.Column():
                        siglip_weight = gr.Slider(0.0, 1.0, 1.0, step=0.05, label="Spiritual Resemblance <--> Formal Resemblance")
                with gr.Row():
                    prompt = gr.Textbox(label="Prompt", value="a person in a beautiful garden. High resolution, extremely detailed")
                    # use_text_prompt = gr.Checkbox(label="Use text prompt", value=True)
                    
                with gr.Row():
                    # Image generation settings
                    with gr.Column():
                        width = gr.Slider(512, 1024, 768, step=64, label="Generation Width")
                        height = gr.Slider(512, 1024, 768, step=64, label="Generation Height")
                    
                with gr.Accordion("Advanced Options", open=False):
                    with gr.Row():
                        num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
                        guidance = gr.Slider(1.0, 10.0, 4.0, step=0.1, label="Guidance")
                        seed = gr.Number(-1, label="Seed (-1 for random)")
                    
                        # start_at = gr.Slider(0, 50, 0, step=1, label="Start Identity at Step")
                        # end_at = gr.Number(-1, label="End Identity at Step (-1 for last)")
                        
                    # with gr.Row():
                    #     # skip_every = gr.Number(-1, label="Skip Identity Every N Steps (-1 for no skip)")
                        
                    #     siglip_weight = gr.Slider(0.0, 1.0, 1.0, step=0.05, label="Siglip Weight")
                    
                
                with gr.Row():
                    with gr.Column():
                        # Reference image inputs
                        gr.Markdown("### Face References (1-4 required)")
                        ref_img1 = gr.Image(label="Reference 1", type="pil")
                        ref_img2 = gr.Image(label="Reference 2", type="pil", visible=True)
                        ref_img3 = gr.Image(label="Reference 3", type="pil", visible=True) 
                        ref_img4 = gr.Image(label="Reference 4", type="pil", visible=True)
                    
                    with gr.Column():
                        # Bounding box inputs
                        gr.Markdown("### Mask Configuration (Option 1: Automatic)")
                        multi_person_image = gr.Image(label="Multi-person image (for automatic bbox extraction)", type="pil")
                        bbox_preview = gr.Image(label="Detected Faces", type="pil")
                        
                        
                        gr.Markdown("### Mask Configuration (Option 2: Manual)")
                        manual_bbox_input = gr.Textbox(
                            label="Manual Bounding Boxes (one per line, format: x1,y1,x2,y2)",
                            lines=4,
                            placeholder="100,100,200,200\n300,100,400,200"
                        )
                
                
                
                
                
                # generate_btn = gr.Button("Generate", variant="primary")
            
            with gr.Column():
                # Output display
                output_image = gr.Image(label="Generated Image")
                debug_face = gr.Image(label="Debug. Faces are expected to be generated in these boxes")
                download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
        # Examples section
        with gr.Row():
            
            gr.Markdown("""
            # Example Configurations
                        
            ### Tips for Better Results
            Be prepared for the first few runs as it may not be very satisfying. 
            - Provide detailed prompts describing the identity. WithAnyone is "controllable", so it needs more information to be controlled. Here are something that might go wrong if not specified:
                - Skin color (generally the race is fine, but for asain descent, if not specified, it may generate darker skin tone);
                - Age (e.g., intead of "a man", try "a young man". If not specified, it may generate an older figure);
                - Body build;
                - Hairstyle;
                - Accessories (glasses, hats, earrings, etc.);
                - Makeup
            - Use the slider to balance between "Resemblance in Spirit" and "Resemblance in Form" according to your needs. If you want to preserve more details in the reference image, move the slider to the right; if you want more freedom and creativity, move it to the left.
            - Try it with LoRAs from community. They are usually fantastic.
            """)
        with gr.Row():
            examples = gr.Examples(
                examples=[
                    [
                        "a highly detailed portrait of a woman shown in profile. Her long, dark hair flows elegantly, intricately decorated with an abundant array of colorful flowers—ranging from soft light pinks and vibrant light oranges to delicate greyish blues—and lush green leaves, giving a sense of natural beauty and charm. Her bright blue eyes are striking, and her lips are painted a vivid red, adding to her alluring appearance. She is clad in an ornate garment with intricate floral patterns in warm hues like pink and orange, featuring exquisite detailing that speaks of fine craftsmanship. Around her neck, she wears a decorative choker with intricate designs, and dangling from her ears are beautiful blue teardrop earrings that catch the light. The background is filled with a profusion of flowers in various shades, creating a rich, vibrant, and romantic atmosphere that complements the woman's elegant and enchanting look.",  # prompt
                        1024, 1024,  # width, height
                        4.0, 25, 42,  # guidance, num_steps, seed
                        "assets/ref1.jpg", None, None, None,  # ref images
                        "240,180,540,500", None,  # manual_bbox_input, multi_person_image
                        # True,  # use_text_prompt
                        0.0,  # siglip_weight
                    ],
                    [
                        "High resolution anfd extremely detailed image of two elegant ladies enjoying a serene afternoon in a quaint Parisian café. They both wear fashionable trench coats and stylish berets, exuding an air of sophistication. One lady gently sips on a cappuccino, while her companion reads an intriguing novel with a subtle smile. The café is framed by charming antique furniture and vintage posters adorning the walls. Soft, warm light filters through a window, casting delicate shadows and creating a cozy, inviting atmosphere. Captured from a slightly elevated angle, the composition highlights the warmth of the scene in a gentle watercolor illustrative style. ",  # prompt
                        1024, 1024,  # width, height
                        4.0, 25, 42,  # guidance, num_steps, seed
                        "assets/ref1.jpg", "assets/ref2.jpg", None, None,  # ref images
                        "248,172,428,498\n554,128,728,464", None,  # manual_bbox_input, multi_person_image
                        # True,  # use_text_prompt
                        0.0,  # siglip_weight
                    ]
                ],
                inputs=[
                    prompt, width, height, guidance, num_steps, seed,
                    ref_img1, ref_img2, ref_img3, ref_img4,
                    manual_bbox_input, multi_person_image, 
                    siglip_weight
                ],
                label="Click to load example configurations"
            )
        # Set up event handlers
        multi_person_image.change(
            fn=update_bbox_display,
            inputs=[multi_person_image],
            outputs=[bbox_preview, manual_bbox_input, bbox_preview]
        )
        
        generate_btn.click(
            fn=process_and_generate,
            inputs=[
                prompt, width, height, guidance, num_steps, seed,
                ref_img1, ref_img2, ref_img3, ref_img4,
                manual_bbox_input, multi_person_image, 
                siglip_weight
            ],
            outputs=[output_image,debug_face, download_btn]
        )
    
    return demo
if __name__ == "__main__":
    from transformers import HfArgumentParser
    @dataclasses.dataclass
    class AppArgs:
        model_type: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
        device: Literal["cuda", "cpu"] = (
            "cuda" if torch.cuda.is_available() 
            else "mps" if hasattr(torch.backends, "mps") and torch.backends.mps.is_available() 
            else "cpu"
        )
        offload: bool = False
        lora_rank: int = 64
        port: int = 7860
        additional_lora: str = None
        lora_scale: float = 1.0
        ipa_path: str = "WithAnyone/WithAnyone"
        clip_path: str = "openai/clip-vit-large-patch14"
        t5_path: str = "xlabs-ai/xflux_text_encoders"
        flux_path: str = "black-forest-labs/FLUX.1-dev"
    parser = HfArgumentParser([AppArgs])
    args = parser.parse_args_into_dataclasses()[0]
    demo = create_demo(
        args.model_type, 
        args.ipa_path,
        args.device, 
        args.offload,
        args.lora_rank,
        args.additional_lora,
        args.lora_scale,
        args.clip_path,
        args.t5_path,
        args.flux_path,
    )
    demo.launch(server_port=args.port)
 |