Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,308 Bytes
4910a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
# Copyright (c) 2025 Fudan University. All rights reserved.
from io import BytesIO
import random
from PIL import Image
import numpy as np
import cv2
import insightface
import torch
from torchvision import transforms
from torch.cuda.amp import autocast
def face_preserving_resize(img, face_bboxes, target_size=512):
"""
Resize image while ensuring all faces are preserved in the output.
Args:
img: PIL Image
face_bboxes: List of [x1, y1, x2, y2] face coordinates
target_size: Maximum dimension for resizing
Returns:
Tuple of (resized image, new_bboxes) or (None, None) if faces can't fit
"""
x1_1, y1_1, x2_1, y2_1 = map(int, face_bboxes[0])
x1_2, y1_2, x2_2, y2_2 = map(int, face_bboxes[1])
min_x1 = min(x1_1, x1_2)
min_y1 = min(y1_1, y1_2)
max_x2 = max(x2_1, x2_2)
max_y2 = max(y2_1, y2_2)
# print("min_x1:", min_x1, "min_y1:", min_y1, "max_x2:", max_x2, "max_y2:", max_y2)
# if any of them is negative, we cannot resize (Idk why this happens)
if min_x1 < 0 or min_y1 < 0 or max_x2 < 0 or max_y2 < 0:
return None, None
# if face width is longer than the image height, or the face height is longer than the image width, we cannot resize
face_width = max_x2 - min_x1
face_height = max_y2 - min_y1
if face_width > img.height or face_height > img.width:
return None, None
# Create a copy of face_bboxes for transformation
new_bboxes = []
for bbox in face_bboxes:
new_bboxes.append(list(map(int, bbox)))
# Choose cropping strategy based on image aspect ratio
if img.width > img.height:
# We need to crop width to make a square
square_size = img.height
# Calculate valid horizontal crop range that preserves all faces
left_max = min_x1 # Leftmost position that includes leftmost face
right_min = max_x2 - square_size # Rightmost position that includes rightmost face
if right_min <= left_max:
# We can find a valid crop window
start = random.randint(int(right_min), int(left_max)) if right_min < left_max else int(right_min)
start = max(0, min(start, img.width - square_size)) # Ensure within image bounds
else:
# Faces are too far apart for square crop - use center of faces
face_center = (min_x1 + max_x2) // 2
start = max(0, min(face_center - (square_size // 2), img.width - square_size))
cropped_img = img.crop((start, 0, start + square_size, square_size))
# Adjust bounding box coordinates based on crop
for bbox in new_bboxes:
bbox[0] -= start # x1 adjustment
bbox[2] -= start # x2 adjustment
# y coordinates remain unchanged
else:
# We need to crop height to make a square
square_size = img.width
# Calculate valid vertical crop range that preserves all faces
top_max = min_y1 # Topmost position that includes topmost face
bottom_min = max_y2 - square_size # Bottommost position that includes bottommost face
if bottom_min <= top_max:
# We can find a valid crop window
start = random.randint(int(bottom_min), int(top_max)) if bottom_min < top_max else int(bottom_min)
start = max(0, min(start, img.height - square_size)) # Ensure within image bounds
else:
# Faces are too far apart for square crop - use center of faces
face_center = (min_y1 + max_y2) // 2
start = max(0, min(face_center - (square_size // 2), img.height - square_size))
cropped_img = img.crop((0, start, square_size, start + square_size))
# Adjust bounding box coordinates based on crop
for bbox in new_bboxes:
bbox[1] -= start # y1 adjustment
bbox[3] -= start # y2 adjustment
# x coordinates remain unchanged
# Calculate scale factor for resizing from square_size to target_size
scale_factor = target_size / square_size
# Adjust bounding boxes for the resize operation
for bbox in new_bboxes:
bbox[0] = int(bbox[0] * scale_factor)
bbox[1] = int(bbox[1] * scale_factor)
bbox[2] = int(bbox[2] * scale_factor)
bbox[3] = int(bbox[3] * scale_factor)
# Final resize to target size
resized_img = cropped_img.resize((target_size, target_size), Image.Resampling.LANCZOS)
# Make sure all coordinates are within bounds (0 to target_size)
# for bbox in new_bboxes:
# bbox[0] = max(0, min(bbox[0], target_size - 1))
# bbox[1] = max(0, min(bbox[1], target_size - 1))
# bbox[2] = max(1, min(bbox[2], target_size))
# bbox[3] = max(1, min(bbox[3], target_size))
return resized_img, new_bboxes
def extract_moref(img, json_data, face_size_restriction=100):
"""
Extract faces from an image based on bounding boxes in JSON data.
Makes each face square and resizes to 512x512.
Args:
img: PIL Image or image data
json_data: JSON object with 'bboxes' and 'crop' information
Returns:
List of PIL Images, each 512x512, containing extracted faces
"""
# Ensure img is a PIL Image
try:
if not isinstance(img, Image.Image) and not isinstance(img, torch.Tensor) and not isinstance(img, JpegImageFile):
img = Image.open(BytesIO(img))
bboxes = json_data['bboxes']
# crop = json_data['crop']
# print("len of bboxes:", len(bboxes))
# Recalculate bounding boxes based on crop info
# new_bboxes = [recalculate_bbox(bbox, crop) for bbox in bboxes]
new_bboxes = bboxes
# any of the face is less than 100 * 100, we ignore this image
for bbox in new_bboxes:
x1, y1, x2, y2 = bbox
if x2 - x1 < face_size_restriction or y2 - y1 < face_size_restriction:
return []
# print("len of new_bboxes:", len(new_bboxes))
faces = []
for bbox in new_bboxes:
# print("processing bbox")
# Convert coordinates to integers
x1, y1, x2, y2 = map(int, bbox)
# Calculate width and height
width = x2 - x1
height = y2 - y1
# Make the bounding box square by expanding the shorter dimension
if width > height:
# Height is shorter, expand it
diff = width - height
y1 -= diff // 2
y2 += diff - (diff // 2) # Handle odd differences
elif height > width:
# Width is shorter, expand it
diff = height - width
x1 -= diff // 2
x2 += diff - (diff // 2) # Handle odd differences
# Ensure coordinates are within image boundaries
img_width, img_height = img.size
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(img_width, x2)
y2 = min(img_height, y2)
# Extract face region
face_region = img.crop((x1, y1, x2, y2))
# Resize to 512x512
face_region = face_region.resize((512, 512), Image.LANCZOS)
faces.append(face_region)
# print("len of faces:", len(faces))
return faces
except Exception as e:
print(f"Error processing image: {e}")
return []
def general_face_preserving_resize(img, face_bboxes, target_size=512):
"""
Resize image while ensuring all faces are preserved in the output.
Handles any number of faces (1-5).
Args:
img: PIL Image
face_bboxes: List of [x1, y1, x2, y2] face coordinates
target_size: Maximum dimension for resizing
Returns:
Tuple of (resized image, new_bboxes) or (None, None) if faces can't fit
"""
# Find bounding region containing all faces
if not face_bboxes:
print("Warning: No face bounding boxes provided.")
return None, None
min_x1 = min(bbox[0] for bbox in face_bboxes)
min_y1 = min(bbox[1] for bbox in face_bboxes)
max_x2 = max(bbox[2] for bbox in face_bboxes)
max_y2 = max(bbox[3] for bbox in face_bboxes)
# Check for negative coordinates
if min_x1 < 0 or min_y1 < 0 or max_x2 < 0 or max_y2 < 0:
# print("Warning: Negative coordinates found in face bounding boxes.")
# return None, None
min_x1 = max(min_x1, 0)
min_y1 = max(min_y1, 0)
# Check if faces fit within image
face_width = max_x2 - min_x1
face_height = max_y2 - min_y1
if face_width > img.height or face_height > img.width:
# print("Warning: Faces are too large for the image dimensions.")
# return None, None
# Instead of returning None, we will crop the image to fit the faces
max_x2 = min(max_x2, img.width)
max_y2 = min(max_y2, img.height)
min_x1 = max(min_x1, 0)
min_y1 = max(min_y1, 0)
# Create a copy of face_bboxes for transformation
new_bboxes = []
for bbox in face_bboxes:
new_bboxes.append(list(map(int, bbox)))
# Choose cropping strategy based on image aspect ratio
if img.width > img.height:
# Crop width to make a square
square_size = img.height
# Calculate valid horizontal crop range
left_max = min_x1
right_min = max_x2 - square_size
if right_min <= left_max:
# We can find a valid crop window
start = random.randint(int(right_min), int(left_max)) if right_min < left_max else int(right_min)
start = max(0, min(start, img.width - square_size))
else:
# Faces are too far apart - use center of faces
face_center = (min_x1 + max_x2) // 2
start = max(0, min(face_center - (square_size // 2), img.width - square_size))
cropped_img = img.crop((start, 0, start + square_size, square_size))
# Adjust bounding box coordinates
for bbox in new_bboxes:
bbox[0] -= start
bbox[2] -= start
else:
# Crop height to make a square
square_size = img.width
# Calculate valid vertical crop range
top_max = min_y1
bottom_min = max_y2 - square_size
if bottom_min <= top_max:
start = random.randint(int(bottom_min), int(top_max)) if bottom_min < top_max else int(bottom_min)
start = max(0, min(start, img.height - square_size))
else:
face_center = (min_y1 + max_y2) // 2
start = max(0, min(face_center - (square_size // 2), img.height - square_size))
cropped_img = img.crop((0, start, square_size, start + square_size))
# Adjust bounding box coordinates
for bbox in new_bboxes:
bbox[1] -= start
bbox[3] -= start
# Calculate scale factor and adjust bounding boxes
scale_factor = target_size / square_size
for bbox in new_bboxes:
bbox[0] = int(bbox[0] * scale_factor)
bbox[1] = int(bbox[1] * scale_factor)
bbox[2] = int(bbox[2] * scale_factor)
bbox[3] = int(bbox[3] * scale_factor)
# Final resize to target size
resized_img = cropped_img.resize((target_size, target_size), Image.Resampling.LANCZOS)
# Make sure all coordinates are within bounds
for bbox in new_bboxes:
bbox[0] = max(0, min(bbox[0], target_size - 1))
bbox[1] = max(0, min(bbox[1], target_size - 1))
bbox[2] = max(1, min(bbox[2], target_size))
bbox[3] = max(1, min(bbox[3], target_size))
return resized_img, new_bboxes
def horizontal_concat(images):
widths, heights = zip(*(img.size for img in images))
total_width = sum(widths)
max_height = max(heights)
new_im = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in images:
new_im.paste(img, (x_offset, 0))
x_offset += img.size[0]
return new_im
def extract_object(birefnet, image):
if image.mode != 'RGB':
image = image.convert('RGB')
input_images = transforms.ToTensor()(image).unsqueeze(0).to('cuda', dtype=torch.bfloat16)
# Prediction
with torch.no_grad(), autocast(dtype=torch.bfloat16):
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze().float()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
# Create a binary mask (0 or 255)
binary_mask = mask.convert("L")
# Create a new image with black background
result = Image.new("RGB", image.size, (0, 0, 0))
# Paste the original image onto the black background using the mask
result.paste(image, (0, 0), binary_mask)
return result, mask
class FaceExtractor:
def __init__(self):
self.model = insightface.app.FaceAnalysis(name = "antelopev2", root="./")
self.model.prepare(ctx_id=0, det_thresh=0.4)
def extract(self, image: Image.Image):
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
res = self.model.get(image_np)
if len(res) == 0:
return None, None
res = res[0]
# print(res.keys())
bbox = res["bbox"]
# print("len(bbox)", len(bbox))
moref = extract_moref(image, {"bboxes": [bbox]}, 1)
# print("len(moref)", len(moref))
return moref[0], res["embedding"]
def locate_bboxes(self, image: Image.Image):
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
res = self.model.get(image_np)
if len(res) == 0:
return None
bboxes = []
for r in res:
bbox = r["bbox"]
bboxes.append(bbox)
_, new_bboxes_ = general_face_preserving_resize(image, bboxes, 512)
# ensure the bbox is square
new_bboxes = []
for bbox in new_bboxes_:
x1, y1, x2, y2 = bbox
w = x2 - x1
h = y2 - y1
if w > h:
diff = w - h
y1 = max(0, y1 - diff // 2)
y2 = min(512, y2 + diff // 2 + diff % 2)
else:
diff = h - w
x1 = max(0, x1 - diff // 2)
x2 = min(512, x2 + diff // 2 + diff % 2)
new_bboxes.append([x1, y1, x2, y2])
return new_bboxes
def extract_refs(self, image: Image.Image):
"""
Extracts reference faces from the image.
Returns a list of reference images and their arcface embeddings.
"""
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
res = self.model.get(image_np)
if len(res) == 0:
return None, None
ref_imgs = []
arcface_embeddings = []
for r in res:
bbox = r["bbox"]
moref = extract_moref(image, {"bboxes": [bbox]}, 1)
ref_imgs.append(moref[0])
arcface_embeddings.append(r["embedding"])
return ref_imgs, arcface_embeddings
|