File size: 21,831 Bytes
4910a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright (c) 2025 Fudan University. All rights reserved.



import dataclasses
import json
import os
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union
from io import BytesIO

import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFilter
from PIL.JpegImagePlugin import JpegImageFile

from withanyone_kontext_s.flux.pipeline import WithAnyonePipeline
from util import extract_moref, face_preserving_resize
import insightface


def blur_faces_in_image(img, json_data, face_size_threshold=100, blur_radius=15):
    """
    Blurs facial areas directly in the original image for privacy protection.
    
    Args:
        img: PIL Image or image data
        json_data: JSON object with 'bboxes' and 'crop' information
        face_size_threshold: Minimum size for faces to be considered (default: 100 pixels)
        blur_radius: Strength of the blur effect (higher = more blurred)
        
    Returns:
        PIL Image with faces blurred
    """
    # Ensure img is a PIL Image
    if not isinstance(img, Image.Image) and not isinstance(img, torch.Tensor) and not isinstance(img, JpegImageFile):
        img = Image.open(BytesIO(img))
    
    new_bboxes = json_data['bboxes']
    # crop = json_data['crop'] if 'crop' in json_data else [0, 0, img.width, img.height]
    
    # # Recalculate bounding boxes based on crop info
    # new_bboxes = [recalculate_bbox(bbox, crop) for bbox in bboxes]
    
    # Check face sizes and filter out faces that are too small
    valid_bboxes = []
    for bbox in new_bboxes:
        x1, y1, x2, y2 = bbox
        if x2 - x1 >= face_size_threshold and y2 - y1 >= face_size_threshold:
            valid_bboxes.append(bbox)
    
    # If no valid faces found, return original image
    if not valid_bboxes:
        return img
    
    # Create a copy of the original image to modify
    blurred_img = img.copy()
    
    # Process each face
    for bbox in valid_bboxes:
        # Convert coordinates to integers
        x1, y1, x2, y2 = map(int, bbox)
        
        # Ensure coordinates are within image boundaries
        img_width, img_height = img.size
        x1 = max(0, x1)
        y1 = max(0, y1)
        x2 = min(img_width, x2)
        y2 = min(img_height, y2)
        
        # Extract the face region
        face_region = img.crop((x1, y1, x2, y2))
        
        # Apply blur to the face region
        blurred_face = face_region.filter(ImageFilter.GaussianBlur(radius=blur_radius))
        
        # Paste the blurred face back into the image
        blurred_img.paste(blurred_face, (x1, y1))
    
    return blurred_img


def captioner(prompt: str, num_person = 1) -> List[List[float]]:
    # use random choose for testing
    # within 512
    if num_person == 1:
        bbox_choices = [
            # expanded, centered and quadrant placements
            [96, 96, 288, 288],
            [128, 128, 320, 320],
            [160, 96, 352, 288],
            [96, 160, 288, 352],
            [208, 96, 400, 288],
            [96, 208, 288, 400],
            [192, 160, 368, 336],
            [64, 128, 224, 320],
            [288, 128, 448, 320],
            [128, 256, 320, 448],
            [80, 80, 240, 272],
            [196, 196, 380, 380],
            # originals
            [100, 100, 300, 300],
            [150, 50, 450, 350],
            [200, 100, 500, 400],
            [250, 150, 512, 450],
        ]
        return [bbox_choices[np.random.randint(0, len(bbox_choices))]]
    elif num_person == 2:
        # realistic side-by-side rows (no vertical stacks or diagonals)
        bbox_choices = [
            [[64, 112, 224, 304], [288, 112, 448, 304]],
            [[48, 128, 208, 320], [304, 128, 464, 320]],
            [[32, 144, 192, 336], [320, 144, 480, 336]],
            [[80, 96, 240, 288], [272, 96, 432, 288]],
            [[80, 160, 240, 352], [272, 160, 432, 352]],
            [[64, 128, 240, 336], [272, 144, 432, 320]],  # slight stagger, same row
            [[96, 160, 256, 352], [288, 160, 448, 352]],
            [[64, 192, 224, 384], [288, 192, 448, 384]],  # lower row
            [[16, 128, 176, 320], [336, 128, 496, 320]],  # near edges
            [[48, 120, 232, 328], [280, 120, 464, 328]],
            [[96, 160, 240, 336], [272, 160, 416, 336]],  # tighter faces
            [[72, 136, 232, 328], [280, 152, 440, 344]],  # small vertical offset
            [[48, 120, 224, 344], [288, 144, 448, 336]],  # asymmetric sizes
            [[80, 224, 240, 416], [272, 224, 432, 416]],  # bottom row
            [[80, 64, 240, 256], [272, 64, 432, 256]],    # top row
            [[96, 176, 256, 368], [288, 176, 448, 368]],
        ]
        return bbox_choices[np.random.randint(0, len(bbox_choices))]
    
    elif num_person == 3:
        # Non-overlapping 3-person layouts within 512x512
        bbox_choices = [
            [[20, 140, 150, 360], [180, 120, 330, 360], [360, 130, 500, 360]],
            [[30, 100, 160, 300], [190, 90, 320, 290], [350, 110, 480, 310]],
            [[40, 180, 150, 330], [200, 180, 310, 330], [360, 180, 470, 330]],
            [[60, 120, 170, 300], [210, 110, 320, 290], [350, 140, 480, 320]],
            [[50, 80, 170, 250], [200, 130, 320, 300], [350, 80, 480, 250]],
            [[40, 260, 170, 480], [190, 60, 320, 240], [350, 260, 490, 480]],
            [[30, 120, 150, 320], [200, 140, 320, 340], [360, 160, 500, 360]],
            [[80, 140, 200, 300], [220, 80, 350, 260], [370, 160, 500, 320]],
        ]
        return bbox_choices[np.random.randint(0, len(bbox_choices))]
    elif num_person == 4:
        # Non-overlapping 4-person layouts within 512x512
        bbox_choices = [
            [[20, 100, 120, 240], [140, 100, 240, 240], [260, 100, 360, 240], [380, 100, 480, 240]],
            [[40, 60, 200, 260], [220, 60, 380, 260], [40, 280, 200, 480], [220, 280, 380, 480]],
            [[180, 30, 330, 170], [30, 220, 150, 380], [200, 220, 320, 380], [360, 220, 490, 380]],
            [[30, 60, 140, 200], [370, 60, 480, 200], [30, 320, 140, 460], [370, 320, 480, 460]],
            [[20, 120, 120, 380], [140, 100, 240, 360], [260, 120, 360, 380], [380, 100, 480, 360]],
            [[30, 80, 150, 240], [180, 120, 300, 280], [330, 80, 450, 240], [200, 300, 320, 460]],
            [[30, 140, 110, 330], [140, 140, 220, 330], [250, 140, 330, 330], [370, 140, 450, 330]],
            [[40, 80, 150, 240], [40, 260, 150, 420], [200, 80, 310, 240], [370, 80, 480, 240]],
        ]
        return bbox_choices[np.random.randint(0, len(bbox_choices))]


class FaceExtractor:
    def __init__(self, model_path="./"):
        self.model = insightface.app.FaceAnalysis(name="antelopev2", root="./")
        self.model.prepare(ctx_id=0)

    def extract(self, image: Image.Image):
        """Extract single face and embedding from an image"""
        image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        res = self.model.get(image_np)
        if len(res) == 0:
            return None, None
        res = res[0]
        bbox = res["bbox"]
        moref = extract_moref(image, {"bboxes": [bbox]}, 1)
        return moref[0], res["embedding"]

    def extract_refs(self, image: Image.Image):
        """Extract multiple faces and embeddings from an image"""
        image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        res = self.model.get(image_np)
        if len(res) == 0:
            return None, None, None, None
        ref_imgs = []
        arcface_embeddings = []
        bboxes = []
        for r in res:
            bbox = r["bbox"]
            bboxes.append(bbox)
            moref = extract_moref(image, {"bboxes": [bbox]}, 1)
            ref_imgs.append(moref[0])
            arcface_embeddings.append(r["embedding"])
        
        # Convert bboxes to the correct format
        new_img, new_bboxes = face_preserving_resize(image, bboxes, 512)
        return ref_imgs, arcface_embeddings, new_bboxes, new_img


def resize_bbox(bbox, ori_width, ori_height, new_width, new_height):
    """Resize bounding box coordinates while preserving aspect ratio"""
    x1, y1, x2, y2 = bbox
    
    # Calculate scaling factors
    width_scale = new_width / ori_width
    height_scale = new_height / ori_height
    
    # Use minimum scaling factor to preserve aspect ratio
    min_scale = min(width_scale, height_scale)
    
    # Calculate offsets for centering the scaled box
    width_offset = (new_width - ori_width * min_scale) / 2
    height_offset = (new_height - ori_height * min_scale) / 2
    
    # Scale and adjust coordinates
    new_x1 = int(x1 * min_scale + width_offset)
    new_y1 = int(y1 * min_scale + height_offset)
    new_x2 = int(x2 * min_scale + width_offset)
    new_y2 = int(y2 * min_scale + height_offset)
    
    return [new_x1, new_y1, new_x2, new_y2]


def draw_bboxes_on_image(image, bboxes):
    """Draw bounding boxes on image for visualization"""
    if bboxes is None:
        return image
    
    # Create a copy to draw on
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)
    
    # Draw each bbox with a different color
    colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0)]
    
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        x1, y1, x2, y2 = [int(coord) for coord in bbox]
        # Draw rectangle
        draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
        # Draw label
        draw.text((x1, y1-15), f"Face {i+1}", fill=color)
    
    return img_draw


def create_demo(
    model_type: str = "flux-dev",
    ipa_path: str = "./ckpt/ipa.safetensors",
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    offload: bool = False,
    lora_rank: int = 64,
    additional_lora_ckpt: Optional[str] = None,
    lora_scale: float = 1.0,
    clip_path: str = "openai/clip-vit-large-patch14",
    t5_path: str = "xlabs-ai/xflux_text_encoders",
    flux_path: str = "black-forest-labs/FLUX.1-dev",
):
    
    face_extractor = FaceExtractor()
    # Initialize pipeline and face extractor
    pipeline = WithAnyonePipeline(
        model_type,
        ipa_path,
        device,
        offload,
        only_lora=True,
        no_lora=True,
        lora_rank=lora_rank,
        additional_lora_ckpt=additional_lora_ckpt,
        lora_weight=lora_scale,
        face_extractor=face_extractor,
        clip_path=clip_path,
        t5_path=t5_path,
        flux_path=flux_path,
    )
    

    def parse_bboxes(bbox_text):
        """Parse bounding box text input"""
        if not bbox_text or bbox_text.strip() == "":
            return None
        
        try:
            bboxes = []
            lines = bbox_text.strip().split("\n")
            for line in lines:
                if not line.strip():
                    continue
                coords = [float(x) for x in line.strip().split(",")]
                if len(coords) != 4:
                    raise ValueError(f"Each bbox must have 4 coordinates (x1,y1,x2,y2), got: {line}")
                bboxes.append(coords)
            return bboxes
        except Exception as e:
            raise gr.Error(f"Invalid bbox format: {e}")
    
    def extract_from_base_image(base_img):
        """Extract references and bboxes from the base image"""
        if base_img is None:
            return None, None, None, None
        
        # Convert from numpy to PIL if needed
        if isinstance(base_img, np.ndarray):
            base_img = Image.fromarray(base_img)
        
        ref_imgs, arcface_embeddings, bboxes, new_img = face_extractor.extract_refs(base_img)
        
        if ref_imgs is None or len(ref_imgs) == 0:
            raise gr.Error("No faces detected in the base image")
        
        # Limit to max 4 faces
        ref_imgs = ref_imgs[:4]
        arcface_embeddings = arcface_embeddings[:4]
        bboxes = bboxes[:4]
        
        # Create visualization with bboxes
        viz_image = draw_bboxes_on_image(new_img, bboxes)
        
        # Format bboxes as string for display
        bbox_text = "\n".join([f"{bbox[0]:.1f},{bbox[1]:.1f},{bbox[2]:.1f},{bbox[3]:.1f}" for bbox in bboxes])
        
        return ref_imgs, arcface_embeddings, bboxes, viz_image, bbox_text
    
    def process_and_generate(
        prompt, 
        guidance, num_steps, seed,
        ref_img1, ref_img2, ref_img3, ref_img4,
        base_img,
        manual_bboxes_text, 
        use_text_prompt,
        siglip_weight
    ):
        # Validate base_img is provided
        if base_img is None:
            raise gr.Error("Base image is required")
            
        # Convert numpy to PIL if needed
        if isinstance(base_img, np.ndarray):
            base_img = Image.fromarray(base_img)
            
        # Get dimensions from base_img
        width, height = base_img.size

            
        # Collect and validate reference images
        ref_images = [img for img in [ref_img1, ref_img2, ref_img3, ref_img4] if img is not None]
        
        if not ref_images:
            raise gr.Error("At least one reference image is required")
        
        # Process reference images to extract face and embeddings
        ref_imgs = []
        arcface_embeddings = []
        
        # Extract bboxes from the base image
        extracted_refs, extracted_embeddings, bboxes_, _, _ = extract_from_base_image(base_img)
        bboxes__ = [resize_bbox(bbox, 512, 512, width, height) for bbox in bboxes_]
        if extracted_refs is None:
            raise gr.Error("No faces detected in the base image. Please provide a different base image with clear faces.")
        
        # Create blurred canvas by blurring faces in the base image
        blurred_canvas = blur_faces_in_image(base_img, {'bboxes': bboxes__})

        
        bboxes = [bboxes__]  # Wrap in list for batch input format

        # Process each reference image
        for img in ref_images:
            if isinstance(img, np.ndarray):
                img = Image.fromarray(img)
            
            ref_img, embedding = face_extractor.extract(img)
            if ref_img is None or embedding is None:
                raise gr.Error("Failed to extract face from one of the reference images")
            
            ref_imgs.append(ref_img)
            arcface_embeddings.append(embedding)
            
        if len(bboxes[0]) != len(ref_imgs):
            raise gr.Error(f"Number of bboxes ({len(bboxes[0])}) must match number of reference images ({len(ref_imgs)})")
        
        # Convert arcface embeddings to tensor
        arcface_embeddings = [torch.tensor(embedding) for embedding in arcface_embeddings]
        arcface_embeddings = torch.stack(arcface_embeddings).to(device)
        
        # Generate image
        final_prompt = prompt if use_text_prompt else ""


        if seed < 0:
            seed = np.random.randint(0, 1000000)
        
        image_gen = pipeline(
            prompt=final_prompt,
            width=width,
            height=height,
            guidance=guidance,
            num_steps=num_steps,
            seed=seed if seed > 0 else None,
            ref_imgs=ref_imgs,
            img_cond=blurred_canvas,  # Pass the blurred canvas image
            arcface_embeddings=arcface_embeddings,
            bboxes=bboxes,
            max_num_ids=len(ref_imgs),
            siglip_weight=0,
            id_weight=1, # only arcface supported now
            arc_only=True,
        )
        
        # Save temp file for download
        temp_path = "temp_generated.png"
        image_gen.save(temp_path)

        # draw bboxes on the generated image for debug
        debug_face = draw_bboxes_on_image(image_gen, bboxes[0])
        
        return image_gen, debug_face, temp_path
    
    def update_bbox_display(base_img):
        if base_img is None:
            return None, None
        
        try:
            _, _, _, viz_image, bbox_text = extract_from_base_image(base_img)
            return viz_image, bbox_text
        except Exception as e:
            return None, None

    # Create Gradio interface
    with gr.Blocks() as demo:
        gr.Markdown("# WithAnyone Kontext Demo")
        
        with gr.Row():
            
            with gr.Column():
                # Input controls
                generate_btn = gr.Button("Generate", variant="primary")
                siglip_weight = 0.0
                with gr.Row():
                    prompt = gr.Textbox(label="Prompt", value="a person in a beautiful garden. High resolution, extremely detailed")
                    use_text_prompt = gr.Checkbox(label="Use text prompt", value=True)
                    
                with gr.Accordion("Advanced Options", open=False):
                    with gr.Row():
                        num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
                        guidance = gr.Slider(1.0, 10.0, 4.0, step=0.1, label="Guidance")
                        seed = gr.Number(-1, label="Seed (-1 for random)")
                
                with gr.Row():
                    with gr.Column():
                        # Reference image inputs
                        gr.Markdown("### Face References (1-4 required)")
                        ref_img1 = gr.Image(label="Reference 1", type="pil")
                        ref_img2 = gr.Image(label="Reference 2", type="pil", visible=True)
                        ref_img3 = gr.Image(label="Reference 3", type="pil", visible=True) 
                        ref_img4 = gr.Image(label="Reference 4", type="pil", visible=True)
                    
                    with gr.Column():
                        # Base image input - combines the previous canvas and multi-person image
                        gr.Markdown("### Base Image (Required)")
                        base_img = gr.Image(label="Base Image - faces will be detected and replaced", type="pil")
                        
                        bbox_preview = gr.Image(label="Detected Faces", type="pil")
                        
                        gr.Markdown("### Manual Bounding Box Override (Optional)")
                        manual_bbox_input = gr.Textbox(
                            label="Manual Bounding Boxes (one per line, format: x1,y1,x2,y2)",
                            lines=4,
                            placeholder="100,100,200,200\n300,100,400,200"
                        )
                
            
            with gr.Column():
                # Output display
                output_image = gr.Image(label="Generated Image")
                debug_face = gr.Image(label="Debug: Faces are expected to be generated in these boxes")
                download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)

        # Examples section
        with gr.Row():
            
            gr.Markdown("""
            # Example Configurations
                        
            ### Tips for Better Results
            - Base image is required - faces in this image will be detected, blurred, and then replaced
            - Provide clear reference images with visible faces
            - Use detailed prompts describing the desired output
            - Adjust the resemblance slider based on your needs - more to the right for closer facial resemblance
            """)
        with gr.Row():
            examples = gr.Examples(
                examples=[
                    [
                        "",  # prompt
                        4.0, 25, 42,  # guidance, num_steps, seed
                        "assets/ref3.jpg", "assets/ref1.jpg", None, None,  # ref images
                        "assets/canvas.jpg",  # base image
                        False,  # use_text_prompt
                    ]
                ],
                inputs=[
                    prompt, guidance, num_steps, seed,
                    ref_img1, ref_img2, ref_img3, ref_img4,
                    base_img, use_text_prompt
                ],
                label="Click to load example configurations"
            )
        # Set up event handlers
        base_img.change(
            fn=update_bbox_display,
            inputs=[base_img],
            outputs=[bbox_preview, manual_bbox_input]
        )
        
        generate_btn.click(
            fn=process_and_generate,
            inputs=[
                prompt, guidance, num_steps, seed,
                ref_img1, ref_img2, ref_img3, ref_img4,
                base_img, use_text_prompt,
            ],
            outputs=[output_image, debug_face, download_btn]
        )
    
    return demo


if __name__ == "__main__":
    from transformers import HfArgumentParser

    @dataclasses.dataclass
    class AppArgs:
        model_type: Literal["flux-dev", "flux-kontext", "flux-schnell"] = "flux-kontext"
        device: Literal["cuda", "cpu"] = (
            "cuda" if torch.cuda.is_available() 
            else "mps" if hasattr(torch.backends, "mps") and torch.backends.mps.is_available() 
            else "cpu"
        )
        offload: bool = False
        lora_rank: int = 64
        port: int = 7860
        additional_lora: str = None
        lora_scale: float = 1.0
        ipa_path: str = "./ckpt/ipa.safetensors"
        clip_path: str = "openai/clip-vit-large-patch14"
        t5_path: str = "xlabs-ai/xflux_text_encoders"
        flux_path: str = "black-forest-labs/FLUX.1-dev"

    parser = HfArgumentParser([AppArgs])
    args = parser.parse_args_into_dataclasses()[0]

    demo = create_demo(
        args.model_type, 
        args.ipa_path,
        args.device, 
        args.offload,
        args.lora_rank,
        args.additional_lora,
        args.lora_scale,
        args.clip_path,
        args.t5_path,
        args.flux_path,
    )
    demo.launch(server_port=args.port)