Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,711 Bytes
4910a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Copyright (c) 2025 Fudan University. All rights reserved.
import os
import dataclasses
from typing import Literal
from accelerate import Accelerator
from transformers import HfArgumentParser
from PIL import Image
import json
import itertools
from withanyone.flux.pipeline import WithAnyonePipeline
from util import extract_moref, general_face_preserving_resize, horizontal_concat, extract_object, FaceExtractor
import numpy as np
import random
import torch
from transformers import AutoModelForImageSegmentation
from torch.cuda.amp import autocast
BACK_UP_BBOXES_DOUBLE = [
[[100,100,200,200], [300,100,400,200]], # 2 faces
[[150,100,250,200], [300,100,400,200]]
]
BACK_UP_BBOXES = [ # for single face
[[150,100,250,200]],
[[100,100,200,200]],
[[200,100,300,200]],
[[250,100,350,200]],
[[300,100,400,200]],
]
@dataclasses.dataclass
class InferenceArgs:
prompt: str | None = None
image_paths: list[str] | None = None
eval_json_path: str | None = None
offload: bool = False
num_images_per_prompt: int = 1
model_type: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
width: int = 512
height: int = 512
ref_size: int = -1
num_steps: int = 25
guidance: float = 4
seed: int = 1234
save_path: str = "output/inference"
only_lora: bool = True
concat_refs: bool = False
lora_rank: int = 64
data_resolution: int = 512
save_iter: str = "500"
use_rec: bool = False
drop_text: bool = False
use_matting: bool = False
id_weight: float = 1.0
siglip_weight: float = 1.0
bbox_from_json: bool = True
data_root: str = "./"
# for lora
additional_lora: str | None = None
trigger: str = ""
lora_weight: float = 1.0
# path to the ipa model
ipa_path: str = "./ckpt/ipa.safetensors"
clip_path: str = "openai/clip-vit-large-patch14"
t5_path: str = "xlabs-ai/xflux_text_encoders"
flux_path: str = "black-forest-labs/FLUX.1-dev"
siglip_path: str = "google/siglip-base-patch16-256-i18n"
def main(args: InferenceArgs):
accelerator = Accelerator()
face_extractor = FaceExtractor()
pipeline = WithAnyonePipeline(
args.model_type,
args.ipa_path,
accelerator.device,
args.offload,
only_lora=args.only_lora,
face_extractor=face_extractor,
additional_lora_ckpt=args.additional_lora,
lora_weight=args.lora_weight,
clip_path=args.clip_path,
t5_path=args.t5_path,
flux_path=args.flux_path,
siglip_path=args.siglip_path,
)
if args.use_matting:
birefnet = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True).to('cuda', dtype=torch.bfloat16)
assert args.prompt is not None or args.eval_json_path is not None, \
"Please provide either prompt or eval_json_path"
# if args.eval_json_path is not None:
assert args.eval_json_path is not None, "Please provide eval_json_path. This script only supports batch inference."
with open(args.eval_json_path, "rt") as f:
data_dicts = json.load(f)
data_root = args.data_root
metadata = {}
for (i, data_dict), j in itertools.product(enumerate(data_dicts), range(args.num_images_per_prompt)):
if (i * args.num_images_per_prompt + j) % accelerator.num_processes != accelerator.process_index:
continue
# check if exist, if this image is already generated, skip it
# if any of the images are None, skip this image
if not os.path.exists(os.path.join(data_root, data_dict["image_paths"][0])):
print(f"Image {i} does not exist, skipping...")
print("path:", os.path.join(data_root, data_dict["image_paths"][0]))
continue
# extract bbox
ori_img_path = data_dict.get("ori_img_path", None)
# ori_img = Image.open(os.path.join(data_root, data_dict["ori_img_path"]))
# basename = data_dict["ori_img_path"].split(".")[0].replace("/", "_")
if ori_img_path is None:
basename = f"{i}_{j}"
else:
basename = data_dict["ori_img_path"].split(".")[0].replace("/", "_")
ori_img = Image.open(os.path.join(data_root, ori_img_path))
bboxes = None
print("Processing image", i, basename)
if not args.bbox_from_json:
if ori_img_path is None:
print(f"Image {i} has no ori_img_path, cannot extract bbox, skipping...")
continue
ori_img = Image.open(os.path.join(data_root, ori_img_path))
bboxes = face_extractor.locate_bboxes(ori_img)
# cut bbox length to num of imgae_paths
if bboxes is not None and len(bboxes) > len(data_dict["image_paths"]):
bboxes = bboxes[:len(data_dict["image_paths"])]
elif bboxes is not None and len(bboxes) < len(data_dict["image_paths"]):
print(f"Image {i} has less faces than image_paths, continuing...")
continue
else:
json_file_path = os.path.join(data_root, basename + ".json")
if os.path.exists(json_file_path):
with open(json_file_path, "r") as f:
json_data = json.load(f)
old_bboxes = json_data.get("bboxes", None)
if old_bboxes is None:
print(f"Image {i} has no bboxes in json file, using backup bboxes...")
# v202 -> 2 faces v200_single -> 1 face
if "v202" in args.eval_json_path:
old_bboxes = random.choice(BACK_UP_BBOXES_DOUBLE)
elif "v200_single" in args.eval_json_path:
old_bboxes = random.choice(BACK_UP_BBOXES)
def recalculate_bbox( bbox, crop):
"""
The image is cropped, so we need to recalculate the bbox.
bbox: [x1, y1, x2, y2]
crop: [x1c, y1c, x2c, y2c]
we just need to minus x1c and y1c from x1, y1,
"""
x1, y1, x2, y2 = bbox
x1c, y1c, x2c, y2c = crop
return [x1-x1c, y1-y1c, x2-x1c, y2-y1c]
crop = json_data.get("crop", None)
rec_bboxes = [
recalculate_bbox(bbox, crop) if crop is not None else bbox for bbox in old_bboxes]
# face_preserving_resize(image, bboxes, 512)
if ori_img_path is not None:
_, bboxes = general_face_preserving_resize(ori_img, rec_bboxes, 512)
# else we consider the provided bbox is already in target size
else:
bboxes = rec_bboxes
if bboxes is None:
print(f"Image {i} has no face, bboxes are None, using backup bboxes..., basename: {basename}")
bboxes = random.choice(BACK_UP_BBOXES_DOUBLE)
print(f"Use backup bboxes: {bboxes}")
ref_imgs = []
arcface_embeddings = []
if not args.use_rec:
break_flag = False
for img_path in data_dict["image_paths"]:
img = Image.open(os.path.join(data_root, img_path))
ref_img, arcface_embedding = face_extractor.extract(img)
if ref_img is not None and arcface_embedding is not None:
if args.use_matting:
ref_img, _ = extract_object(birefnet, ref_img)
ref_imgs.append(ref_img)
arcface_embeddings.append(arcface_embedding)
else:
print(f"Image {i} has no face, skipping...")
break_flag = True
break
if break_flag:
continue
else:
ref_imgs, arcface_embeddings = face_extractor.extract_refs(ori_img)
if ref_imgs is None or arcface_embeddings is None:
print(f"Image {i} has no face, skipping...")
continue
if args.use_matting:
ref_imgs = [extract_object(birefnet, ref_img)[0] for ref_img in ref_imgs]
# arcface to tensor
arcface_embeddings = [torch.tensor(arcface_embedding) for arcface_embedding in arcface_embeddings]
arcface_embeddings = torch.stack(arcface_embeddings).to(accelerator.device)
# check, if any of the images are None, if so, skip this image
if any(ref_img is None for ref_img in ref_imgs):
print(f"Image {i}: failed to extract face, skipping...")
continue
if args.ref_size==-1:
args.ref_size = 512 if len(ref_imgs)==1 else 320
if args.trigger != "" and args.trigger is not None:
data_dict["prompt"] = args.trigger + " " + data_dict["prompt"]
image_gen = pipeline(
prompt=data_dict["prompt"] if not args.drop_text else "",
width=args.width,
height=args.height,
guidance=args.guidance,
num_steps=args.num_steps,
seed=args.seed,
ref_imgs=ref_imgs,
arcface_embeddings=arcface_embeddings,
bboxes=[bboxes],
id_weight=args.id_weight,
siglip_weight=args.siglip_weight,
)
if args.concat_refs:
image_gen = horizontal_concat([image_gen, *ref_imgs])
os.makedirs(args.save_path, exist_ok=True)
save_path = os.path.join(args.save_path, basename)
os.makedirs(os.path.join(args.save_path, basename), exist_ok=True)
# save refs, image_gen and original image
for k, ref_img in enumerate(ref_imgs):
ref_img.save(os.path.join(save_path, f"ref_{k}.jpg"))
image_gen.save(os.path.join(save_path, f"out.jpg"))
# original image
ori_img = Image.open(os.path.join(data_root, data_dict["ori_img_path"])) if "ori_img_path" in data_dict else None
if ori_img is not None:
ori_img.save(os.path.join(save_path, f"ori.jpg"))
# save config
args_dict = vars(args)
args_dict['prompt'] = data_dict["prompt"]
args_dict["name"] = data_dict["name"] if "name" in data_dict else None
json.dump(args_dict, open(os.path.join(save_path, f"meta.json"), 'w'), indent=4, ensure_ascii=False)
if __name__ == "__main__":
parser = HfArgumentParser([InferenceArgs])
args = parser.parse_args_into_dataclasses()[0]
main(args)
|