WithAnyone_demo / util.py
WithAnyone's picture
Upload 29 files
4910a8a verified
# Copyright (c) 2025 Fudan University. All rights reserved.
from io import BytesIO
import random
from PIL import Image
import numpy as np
import cv2
import insightface
import torch
from torchvision import transforms
from torch.cuda.amp import autocast
def face_preserving_resize(img, face_bboxes, target_size=512):
"""
Resize image while ensuring all faces are preserved in the output.
Args:
img: PIL Image
face_bboxes: List of [x1, y1, x2, y2] face coordinates
target_size: Maximum dimension for resizing
Returns:
Tuple of (resized image, new_bboxes) or (None, None) if faces can't fit
"""
x1_1, y1_1, x2_1, y2_1 = map(int, face_bboxes[0])
x1_2, y1_2, x2_2, y2_2 = map(int, face_bboxes[1])
min_x1 = min(x1_1, x1_2)
min_y1 = min(y1_1, y1_2)
max_x2 = max(x2_1, x2_2)
max_y2 = max(y2_1, y2_2)
# print("min_x1:", min_x1, "min_y1:", min_y1, "max_x2:", max_x2, "max_y2:", max_y2)
# if any of them is negative, we cannot resize (Idk why this happens)
if min_x1 < 0 or min_y1 < 0 or max_x2 < 0 or max_y2 < 0:
return None, None
# if face width is longer than the image height, or the face height is longer than the image width, we cannot resize
face_width = max_x2 - min_x1
face_height = max_y2 - min_y1
if face_width > img.height or face_height > img.width:
return None, None
# Create a copy of face_bboxes for transformation
new_bboxes = []
for bbox in face_bboxes:
new_bboxes.append(list(map(int, bbox)))
# Choose cropping strategy based on image aspect ratio
if img.width > img.height:
# We need to crop width to make a square
square_size = img.height
# Calculate valid horizontal crop range that preserves all faces
left_max = min_x1 # Leftmost position that includes leftmost face
right_min = max_x2 - square_size # Rightmost position that includes rightmost face
if right_min <= left_max:
# We can find a valid crop window
start = random.randint(int(right_min), int(left_max)) if right_min < left_max else int(right_min)
start = max(0, min(start, img.width - square_size)) # Ensure within image bounds
else:
# Faces are too far apart for square crop - use center of faces
face_center = (min_x1 + max_x2) // 2
start = max(0, min(face_center - (square_size // 2), img.width - square_size))
cropped_img = img.crop((start, 0, start + square_size, square_size))
# Adjust bounding box coordinates based on crop
for bbox in new_bboxes:
bbox[0] -= start # x1 adjustment
bbox[2] -= start # x2 adjustment
# y coordinates remain unchanged
else:
# We need to crop height to make a square
square_size = img.width
# Calculate valid vertical crop range that preserves all faces
top_max = min_y1 # Topmost position that includes topmost face
bottom_min = max_y2 - square_size # Bottommost position that includes bottommost face
if bottom_min <= top_max:
# We can find a valid crop window
start = random.randint(int(bottom_min), int(top_max)) if bottom_min < top_max else int(bottom_min)
start = max(0, min(start, img.height - square_size)) # Ensure within image bounds
else:
# Faces are too far apart for square crop - use center of faces
face_center = (min_y1 + max_y2) // 2
start = max(0, min(face_center - (square_size // 2), img.height - square_size))
cropped_img = img.crop((0, start, square_size, start + square_size))
# Adjust bounding box coordinates based on crop
for bbox in new_bboxes:
bbox[1] -= start # y1 adjustment
bbox[3] -= start # y2 adjustment
# x coordinates remain unchanged
# Calculate scale factor for resizing from square_size to target_size
scale_factor = target_size / square_size
# Adjust bounding boxes for the resize operation
for bbox in new_bboxes:
bbox[0] = int(bbox[0] * scale_factor)
bbox[1] = int(bbox[1] * scale_factor)
bbox[2] = int(bbox[2] * scale_factor)
bbox[3] = int(bbox[3] * scale_factor)
# Final resize to target size
resized_img = cropped_img.resize((target_size, target_size), Image.Resampling.LANCZOS)
# Make sure all coordinates are within bounds (0 to target_size)
# for bbox in new_bboxes:
# bbox[0] = max(0, min(bbox[0], target_size - 1))
# bbox[1] = max(0, min(bbox[1], target_size - 1))
# bbox[2] = max(1, min(bbox[2], target_size))
# bbox[3] = max(1, min(bbox[3], target_size))
return resized_img, new_bboxes
def extract_moref(img, json_data, face_size_restriction=100):
"""
Extract faces from an image based on bounding boxes in JSON data.
Makes each face square and resizes to 512x512.
Args:
img: PIL Image or image data
json_data: JSON object with 'bboxes' and 'crop' information
Returns:
List of PIL Images, each 512x512, containing extracted faces
"""
# Ensure img is a PIL Image
try:
if not isinstance(img, Image.Image) and not isinstance(img, torch.Tensor) and not isinstance(img, JpegImageFile):
img = Image.open(BytesIO(img))
bboxes = json_data['bboxes']
# crop = json_data['crop']
# print("len of bboxes:", len(bboxes))
# Recalculate bounding boxes based on crop info
# new_bboxes = [recalculate_bbox(bbox, crop) for bbox in bboxes]
new_bboxes = bboxes
# any of the face is less than 100 * 100, we ignore this image
for bbox in new_bboxes:
x1, y1, x2, y2 = bbox
if x2 - x1 < face_size_restriction or y2 - y1 < face_size_restriction:
return []
# print("len of new_bboxes:", len(new_bboxes))
faces = []
for bbox in new_bboxes:
# print("processing bbox")
# Convert coordinates to integers
x1, y1, x2, y2 = map(int, bbox)
# Calculate width and height
width = x2 - x1
height = y2 - y1
# Make the bounding box square by expanding the shorter dimension
if width > height:
# Height is shorter, expand it
diff = width - height
y1 -= diff // 2
y2 += diff - (diff // 2) # Handle odd differences
elif height > width:
# Width is shorter, expand it
diff = height - width
x1 -= diff // 2
x2 += diff - (diff // 2) # Handle odd differences
# Ensure coordinates are within image boundaries
img_width, img_height = img.size
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(img_width, x2)
y2 = min(img_height, y2)
# Extract face region
face_region = img.crop((x1, y1, x2, y2))
# Resize to 512x512
face_region = face_region.resize((512, 512), Image.LANCZOS)
faces.append(face_region)
# print("len of faces:", len(faces))
return faces
except Exception as e:
print(f"Error processing image: {e}")
return []
def general_face_preserving_resize(img, face_bboxes, target_size=512):
"""
Resize image while ensuring all faces are preserved in the output.
Handles any number of faces (1-5).
Args:
img: PIL Image
face_bboxes: List of [x1, y1, x2, y2] face coordinates
target_size: Maximum dimension for resizing
Returns:
Tuple of (resized image, new_bboxes) or (None, None) if faces can't fit
"""
# Find bounding region containing all faces
if not face_bboxes:
print("Warning: No face bounding boxes provided.")
return None, None
min_x1 = min(bbox[0] for bbox in face_bboxes)
min_y1 = min(bbox[1] for bbox in face_bboxes)
max_x2 = max(bbox[2] for bbox in face_bboxes)
max_y2 = max(bbox[3] for bbox in face_bboxes)
# Check for negative coordinates
if min_x1 < 0 or min_y1 < 0 or max_x2 < 0 or max_y2 < 0:
# print("Warning: Negative coordinates found in face bounding boxes.")
# return None, None
min_x1 = max(min_x1, 0)
min_y1 = max(min_y1, 0)
# Check if faces fit within image
face_width = max_x2 - min_x1
face_height = max_y2 - min_y1
if face_width > img.height or face_height > img.width:
# print("Warning: Faces are too large for the image dimensions.")
# return None, None
# Instead of returning None, we will crop the image to fit the faces
max_x2 = min(max_x2, img.width)
max_y2 = min(max_y2, img.height)
min_x1 = max(min_x1, 0)
min_y1 = max(min_y1, 0)
# Create a copy of face_bboxes for transformation
new_bboxes = []
for bbox in face_bboxes:
new_bboxes.append(list(map(int, bbox)))
# Choose cropping strategy based on image aspect ratio
if img.width > img.height:
# Crop width to make a square
square_size = img.height
# Calculate valid horizontal crop range
left_max = min_x1
right_min = max_x2 - square_size
if right_min <= left_max:
# We can find a valid crop window
start = random.randint(int(right_min), int(left_max)) if right_min < left_max else int(right_min)
start = max(0, min(start, img.width - square_size))
else:
# Faces are too far apart - use center of faces
face_center = (min_x1 + max_x2) // 2
start = max(0, min(face_center - (square_size // 2), img.width - square_size))
cropped_img = img.crop((start, 0, start + square_size, square_size))
# Adjust bounding box coordinates
for bbox in new_bboxes:
bbox[0] -= start
bbox[2] -= start
else:
# Crop height to make a square
square_size = img.width
# Calculate valid vertical crop range
top_max = min_y1
bottom_min = max_y2 - square_size
if bottom_min <= top_max:
start = random.randint(int(bottom_min), int(top_max)) if bottom_min < top_max else int(bottom_min)
start = max(0, min(start, img.height - square_size))
else:
face_center = (min_y1 + max_y2) // 2
start = max(0, min(face_center - (square_size // 2), img.height - square_size))
cropped_img = img.crop((0, start, square_size, start + square_size))
# Adjust bounding box coordinates
for bbox in new_bboxes:
bbox[1] -= start
bbox[3] -= start
# Calculate scale factor and adjust bounding boxes
scale_factor = target_size / square_size
for bbox in new_bboxes:
bbox[0] = int(bbox[0] * scale_factor)
bbox[1] = int(bbox[1] * scale_factor)
bbox[2] = int(bbox[2] * scale_factor)
bbox[3] = int(bbox[3] * scale_factor)
# Final resize to target size
resized_img = cropped_img.resize((target_size, target_size), Image.Resampling.LANCZOS)
# Make sure all coordinates are within bounds
for bbox in new_bboxes:
bbox[0] = max(0, min(bbox[0], target_size - 1))
bbox[1] = max(0, min(bbox[1], target_size - 1))
bbox[2] = max(1, min(bbox[2], target_size))
bbox[3] = max(1, min(bbox[3], target_size))
return resized_img, new_bboxes
def horizontal_concat(images):
widths, heights = zip(*(img.size for img in images))
total_width = sum(widths)
max_height = max(heights)
new_im = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in images:
new_im.paste(img, (x_offset, 0))
x_offset += img.size[0]
return new_im
def extract_object(birefnet, image):
if image.mode != 'RGB':
image = image.convert('RGB')
input_images = transforms.ToTensor()(image).unsqueeze(0).to('cuda', dtype=torch.bfloat16)
# Prediction
with torch.no_grad(), autocast(dtype=torch.bfloat16):
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze().float()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
# Create a binary mask (0 or 255)
binary_mask = mask.convert("L")
# Create a new image with black background
result = Image.new("RGB", image.size, (0, 0, 0))
# Paste the original image onto the black background using the mask
result.paste(image, (0, 0), binary_mask)
return result, mask
class FaceExtractor:
def __init__(self):
self.model = insightface.app.FaceAnalysis(name = "antelopev2", root="./")
self.model.prepare(ctx_id=0, det_thresh=0.4)
def extract(self, image: Image.Image):
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
res = self.model.get(image_np)
if len(res) == 0:
return None, None
res = res[0]
# print(res.keys())
bbox = res["bbox"]
# print("len(bbox)", len(bbox))
moref = extract_moref(image, {"bboxes": [bbox]}, 1)
# print("len(moref)", len(moref))
return moref[0], res["embedding"]
def locate_bboxes(self, image: Image.Image):
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
res = self.model.get(image_np)
if len(res) == 0:
return None
bboxes = []
for r in res:
bbox = r["bbox"]
bboxes.append(bbox)
_, new_bboxes_ = general_face_preserving_resize(image, bboxes, 512)
# ensure the bbox is square
new_bboxes = []
for bbox in new_bboxes_:
x1, y1, x2, y2 = bbox
w = x2 - x1
h = y2 - y1
if w > h:
diff = w - h
y1 = max(0, y1 - diff // 2)
y2 = min(512, y2 + diff // 2 + diff % 2)
else:
diff = h - w
x1 = max(0, x1 - diff // 2)
x2 = min(512, x2 + diff // 2 + diff % 2)
new_bboxes.append([x1, y1, x2, y2])
return new_bboxes
def extract_refs(self, image: Image.Image):
"""
Extracts reference faces from the image.
Returns a list of reference images and their arcface embeddings.
"""
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
res = self.model.get(image_np)
if len(res) == 0:
return None, None
ref_imgs = []
arcface_embeddings = []
for r in res:
bbox = r["bbox"]
moref = extract_moref(image, {"bboxes": [bbox]}, 1)
ref_imgs.append(moref[0])
arcface_embeddings.append(r["embedding"])
return ref_imgs, arcface_embeddings