Audio postprocessing
Browse files- app.py +21 -5
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import torch
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import ViTImageProcessor, ViTModel
|
| 4 |
from audiodiffusion import AudioDiffusionPipeline, ImageEncoder
|
|
|
|
|
|
|
| 5 |
|
| 6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
generator1 = torch.Generator(device)
|
|
@@ -13,6 +15,16 @@ processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k
|
|
| 13 |
extractor = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 14 |
image_encoder = ImageEncoder(processor, extractor)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def _encode_image(image):
|
| 17 |
return torch.unsqueeze(image_encoder.encode(image), axis=1).to(device)
|
| 18 |
|
|
@@ -28,9 +40,13 @@ def _generate_spectrogram(condition, steps, eta):
|
|
| 28 |
)
|
| 29 |
return images[0], (sample_rate, audios[0])
|
| 30 |
|
|
|
|
|
|
|
|
|
|
| 31 |
def run_generation(image, steps, eta):
|
| 32 |
condition = _encode_image(image)
|
| 33 |
spectrogram, (sr, audio) = _generate_spectrogram(condition, steps, eta)
|
|
|
|
| 34 |
return spectrogram, (sr, audio)
|
| 35 |
|
| 36 |
with gr.Blocks(title="Image-based soundtrack generation") as demo:
|
|
@@ -44,21 +60,21 @@ with gr.Blocks(title="Image-based soundtrack generation") as demo:
|
|
| 44 |
label="Conditioning image"
|
| 45 |
)
|
| 46 |
steps = gr.Slider(
|
| 47 |
-
minimum=
|
| 48 |
maximum=1000,
|
| 49 |
-
step=
|
| 50 |
value=50,
|
| 51 |
label="Denoising steps"
|
| 52 |
)
|
| 53 |
eta = gr.Slider(
|
| 54 |
-
minimum=0.
|
| 55 |
maximum=1.0,
|
| 56 |
step=0.1,
|
| 57 |
-
value=0.
|
| 58 |
label="η"
|
| 59 |
)
|
| 60 |
gr.Markdown('''
|
| 61 |
-
Eta (η) is a variable that controls the level of interpolation between
|
| 62 |
''')
|
| 63 |
btn = gr.Button("Generate")
|
| 64 |
clear = gr.ClearButton(image)
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import ViTImageProcessor, ViTModel
|
| 4 |
from audiodiffusion import AudioDiffusionPipeline, ImageEncoder
|
| 5 |
+
from pedalboard.io import AudioFile
|
| 6 |
+
from pedalboard import Pedalboard, NoiseGate, Compressor, LowShelfFilter, Gain, HighShelfFilter, Reverb
|
| 7 |
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
generator1 = torch.Generator(device)
|
|
|
|
| 15 |
extractor = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
| 16 |
image_encoder = ImageEncoder(processor, extractor)
|
| 17 |
|
| 18 |
+
board = Pedalboard([
|
| 19 |
+
NoiseGate(threshold_db=-60, ratio=10.0),
|
| 20 |
+
Compressor(threshold_db=60, ratio=1.0),
|
| 21 |
+
LowShelfFilter(cutoff_frequency_hz=220, gain_db=-10),
|
| 22 |
+
HighShelfFilter(cutoff_frequency_hz=1200, gain_db=-10),
|
| 23 |
+
Gain(gain_db=40),
|
| 24 |
+
Reverb(room_size=0.5),
|
| 25 |
+
|
| 26 |
+
])
|
| 27 |
+
|
| 28 |
def _encode_image(image):
|
| 29 |
return torch.unsqueeze(image_encoder.encode(image), axis=1).to(device)
|
| 30 |
|
|
|
|
| 40 |
)
|
| 41 |
return images[0], (sample_rate, audios[0])
|
| 42 |
|
| 43 |
+
def _denoise_audio(audio, sr):
|
| 44 |
+
return board(audio, sr)
|
| 45 |
+
|
| 46 |
def run_generation(image, steps, eta):
|
| 47 |
condition = _encode_image(image)
|
| 48 |
spectrogram, (sr, audio) = _generate_spectrogram(condition, steps, eta)
|
| 49 |
+
audio = _denoise_audio(audio, sr)
|
| 50 |
return spectrogram, (sr, audio)
|
| 51 |
|
| 52 |
with gr.Blocks(title="Image-based soundtrack generation") as demo:
|
|
|
|
| 60 |
label="Conditioning image"
|
| 61 |
)
|
| 62 |
steps = gr.Slider(
|
| 63 |
+
minimum=10,
|
| 64 |
maximum=1000,
|
| 65 |
+
step=10,
|
| 66 |
value=50,
|
| 67 |
label="Denoising steps"
|
| 68 |
)
|
| 69 |
eta = gr.Slider(
|
| 70 |
+
minimum=0.0,
|
| 71 |
maximum=1.0,
|
| 72 |
step=0.1,
|
| 73 |
+
value=0.6,
|
| 74 |
label="η"
|
| 75 |
)
|
| 76 |
gr.Markdown('''
|
| 77 |
+
Eta (η) is a variable that controls the level of interpolation between deterministic (η=0.0) and stochastic (η=1.0) denoising schedule.
|
| 78 |
''')
|
| 79 |
btn = gr.Button("Generate")
|
| 80 |
clear = gr.ClearButton(image)
|
requirements.txt
CHANGED
|
@@ -4,4 +4,5 @@ transformers==4.35.2
|
|
| 4 |
numpy==1.23.5
|
| 5 |
Pillow==9.3.0
|
| 6 |
diffusers==0.23.1
|
| 7 |
-
librosa==0.10.1
|
|
|
|
|
|
| 4 |
numpy==1.23.5
|
| 5 |
Pillow==9.3.0
|
| 6 |
diffusers==0.23.1
|
| 7 |
+
librosa==0.10.1
|
| 8 |
+
pedalboard==0.8.6
|