Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import List, Dict, Tuple
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
|
| 11 |
+
class GRPOTrainer:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.model = None
|
| 14 |
+
self.ref_model = None
|
| 15 |
+
self.tokenizer = None
|
| 16 |
+
self.optimizer = None
|
| 17 |
+
self.training_history = []
|
| 18 |
+
|
| 19 |
+
def load_model(self, model_name: str) -> str:
|
| 20 |
+
"""Load the model and tokenizer"""
|
| 21 |
+
try:
|
| 22 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 24 |
+
self.ref_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 25 |
+
|
| 26 |
+
# Set padding token
|
| 27 |
+
if self.tokenizer.pad_token is None:
|
| 28 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 29 |
+
|
| 30 |
+
# Freeze reference model
|
| 31 |
+
for param in self.ref_model.parameters():
|
| 32 |
+
param.requires_grad = False
|
| 33 |
+
|
| 34 |
+
return f"β
Successfully loaded model: {model_name}"
|
| 35 |
+
except Exception as e:
|
| 36 |
+
return f"β Error loading model: {str(e)}"
|
| 37 |
+
|
| 38 |
+
def compute_rewards(self, prompts: List[str], responses: List[str]) -> torch.Tensor:
|
| 39 |
+
"""Compute rewards for responses (simplified reward function)"""
|
| 40 |
+
rewards = []
|
| 41 |
+
for response in responses:
|
| 42 |
+
# Simple reward based on response length and diversity
|
| 43 |
+
length_reward = min(len(response.split()) / 50, 1.0)
|
| 44 |
+
unique_words = len(set(response.lower().split()))
|
| 45 |
+
diversity_reward = min(unique_words / 20, 1.0)
|
| 46 |
+
reward = (length_reward + diversity_reward) / 2
|
| 47 |
+
rewards.append(reward)
|
| 48 |
+
return torch.tensor(rewards)
|
| 49 |
+
|
| 50 |
+
def compute_kl_penalty(self, logits: torch.Tensor, ref_logits: torch.Tensor) -> torch.Tensor:
|
| 51 |
+
"""Compute KL divergence penalty"""
|
| 52 |
+
probs = F.softmax(logits, dim=-1)
|
| 53 |
+
ref_probs = F.softmax(ref_logits, dim=-1)
|
| 54 |
+
kl = (probs * (probs / ref_probs).log()).sum(-1)
|
| 55 |
+
return kl.mean()
|
| 56 |
+
|
| 57 |
+
def grpo_step(self, prompts: List[str], beta: float = 0.1) -> Dict:
|
| 58 |
+
"""Perform one GRPO training step"""
|
| 59 |
+
if not self.model or not self.tokenizer:
|
| 60 |
+
return {"error": "Model not loaded"}
|
| 61 |
+
|
| 62 |
+
# Tokenize prompts
|
| 63 |
+
inputs = self.tokenizer(prompts, return_tensors="pt", padding=True, truncation=True)
|
| 64 |
+
|
| 65 |
+
# Generate responses
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
outputs = self.model.generate(
|
| 68 |
+
inputs.input_ids,
|
| 69 |
+
max_length=inputs.input_ids.shape[1] + 50,
|
| 70 |
+
do_sample=True,
|
| 71 |
+
temperature=0.8,
|
| 72 |
+
pad_token_id=self.tokenizer.pad_token_id
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Decode responses
|
| 76 |
+
responses = []
|
| 77 |
+
for output in outputs:
|
| 78 |
+
response = self.tokenizer.decode(output[inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 79 |
+
responses.append(response)
|
| 80 |
+
|
| 81 |
+
# Compute rewards
|
| 82 |
+
rewards = self.compute_rewards(prompts, responses)
|
| 83 |
+
|
| 84 |
+
# Forward pass through both models
|
| 85 |
+
self.model.train()
|
| 86 |
+
model_outputs = self.model(inputs.input_ids)
|
| 87 |
+
ref_outputs = self.ref_model(inputs.input_ids)
|
| 88 |
+
|
| 89 |
+
# Compute KL penalty
|
| 90 |
+
kl_penalty = self.compute_kl_penalty(model_outputs.logits, ref_outputs.logits)
|
| 91 |
+
|
| 92 |
+
# Compute loss (simplified GRPO loss)
|
| 93 |
+
loss = -rewards.mean() + beta * kl_penalty
|
| 94 |
+
|
| 95 |
+
# Backward pass
|
| 96 |
+
if self.optimizer:
|
| 97 |
+
self.optimizer.zero_grad()
|
| 98 |
+
loss.backward()
|
| 99 |
+
self.optimizer.step()
|
| 100 |
+
|
| 101 |
+
return {
|
| 102 |
+
"loss": loss.item(),
|
| 103 |
+
"reward": rewards.mean().item(),
|
| 104 |
+
"kl_penalty": kl_penalty.item(),
|
| 105 |
+
"responses": responses
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
def train(self, prompts: List[str], num_steps: int, lr: float, beta: float) -> str:
|
| 109 |
+
"""Run GRPO training"""
|
| 110 |
+
if not self.model:
|
| 111 |
+
return "β Please load a model first"
|
| 112 |
+
|
| 113 |
+
# Initialize optimizer
|
| 114 |
+
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr)
|
| 115 |
+
|
| 116 |
+
results = []
|
| 117 |
+
for step in range(num_steps):
|
| 118 |
+
step_result = self.grpo_step(prompts, beta)
|
| 119 |
+
|
| 120 |
+
if "error" in step_result:
|
| 121 |
+
return f"β Error: {step_result['error']}"
|
| 122 |
+
|
| 123 |
+
result_str = f"Step {step + 1}/{num_steps} - Loss: {step_result['loss']:.4f}, Reward: {step_result['reward']:.4f}, KL: {step_result['kl_penalty']:.4f}"
|
| 124 |
+
results.append(result_str)
|
| 125 |
+
|
| 126 |
+
# Store training history
|
| 127 |
+
self.training_history.append({
|
| 128 |
+
"step": step + 1,
|
| 129 |
+
"loss": step_result['loss'],
|
| 130 |
+
"reward": step_result['reward'],
|
| 131 |
+
"kl_penalty": step_result['kl_penalty']
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
return "\n".join(results)
|
| 135 |
+
|
| 136 |
+
def generate_response(self, prompt: str, max_length: int = 100, temperature: float = 0.8) -> str:
|
| 137 |
+
"""Generate a response using the trained model"""
|
| 138 |
+
if not self.model or not self.tokenizer:
|
| 139 |
+
return "β Please load a model first"
|
| 140 |
+
|
| 141 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
| 142 |
+
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
outputs = self.model.generate(
|
| 145 |
+
inputs.input_ids,
|
| 146 |
+
max_length=inputs.input_ids.shape[1] + max_length,
|
| 147 |
+
temperature=temperature,
|
| 148 |
+
do_sample=True,
|
| 149 |
+
pad_token_id=self.tokenizer.pad_token_id
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 153 |
+
return response
|
| 154 |
+
|
| 155 |
+
def save_model(self, save_path: str) -> str:
|
| 156 |
+
"""Save the trained model"""
|
| 157 |
+
if not self.model:
|
| 158 |
+
return "β No model to save"
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
self.model.save_pretrained(save_path)
|
| 162 |
+
self.tokenizer.save_pretrained(save_path)
|
| 163 |
+
|
| 164 |
+
# Save training history
|
| 165 |
+
with open(os.path.join(save_path, "training_history.json"), "w") as f:
|
| 166 |
+
json.dump(self.training_history, f)
|
| 167 |
+
|
| 168 |
+
return f"β
Model saved to {save_path}"
|
| 169 |
+
except Exception as e:
|
| 170 |
+
return f"β Error saving model: {str(e)}"
|
| 171 |
+
|
| 172 |
+
# Initialize trainer
|
| 173 |
+
trainer = GRPOTrainer()
|
| 174 |
+
|
| 175 |
+
# Gradio interface
|
| 176 |
+
def load_model_interface(model_name):
|
| 177 |
+
return trainer.load_model(model_name)
|
| 178 |
+
|
| 179 |
+
def train_interface(prompts_text, num_steps, learning_rate, beta):
|
| 180 |
+
prompts = [p.strip() for p in prompts_text.split("\n") if p.strip()]
|
| 181 |
+
if not prompts:
|
| 182 |
+
return "β Please provide at least one prompt"
|
| 183 |
+
return trainer.train(prompts, int(num_steps), float(learning_rate), float(beta))
|
| 184 |
+
|
| 185 |
+
def generate_interface(prompt, max_length, temperature):
|
| 186 |
+
return trainer.generate_response(prompt, int(max_length), float(temperature))
|
| 187 |
+
|
| 188 |
+
def save_model_interface(save_path):
|
| 189 |
+
return trainer.save_model(save_path)
|
| 190 |
+
|
| 191 |
+
def get_training_history():
|
| 192 |
+
if not trainer.training_history:
|
| 193 |
+
return "No training history available"
|
| 194 |
+
|
| 195 |
+
history_str = "Training History:\n"
|
| 196 |
+
history_str += "-" * 50 + "\n"
|
| 197 |
+
for entry in trainer.training_history[-10:]: # Show last 10 entries
|
| 198 |
+
history_str += f"Step {entry['step']}: Loss={entry['loss']:.4f}, Reward={entry['reward']:.4f}, KL={entry['kl_penalty']:.4f}\n"
|
| 199 |
+
return history_str
|
| 200 |
+
|
| 201 |
+
# Create Gradio interface
|
| 202 |
+
with gr.Blocks(title="GRPO Model Training") as app:
|
| 203 |
+
gr.Markdown("# π GRPO (Group Relative Policy Optimization) Training App")
|
| 204 |
+
gr.Markdown("Train language models using GRPO technique with this simple interface")
|
| 205 |
+
|
| 206 |
+
with gr.Tab("π§ Model Setup"):
|
| 207 |
+
with gr.Row():
|
| 208 |
+
model_input = gr.Textbox(
|
| 209 |
+
label="Model Name",
|
| 210 |
+
value="Palmyra-56b",
|
| 211 |
+
placeholder="Enter HuggingFace model name (e.g., Palmyra, Qwen, Llama)"
|
| 212 |
+
)
|
| 213 |
+
load_btn = gr.Button("Load Model", variant="primary")
|
| 214 |
+
|
| 215 |
+
model_status = gr.Textbox(label="Status", lines=2)
|
| 216 |
+
load_btn.click(load_model_interface, inputs=model_input, outputs=model_status)
|
| 217 |
+
|
| 218 |
+
with gr.Tab("π― Training"):
|
| 219 |
+
with gr.Row():
|
| 220 |
+
with gr.Column():
|
| 221 |
+
prompts_input = gr.Textbox(
|
| 222 |
+
label="Training Prompts (one per line)",
|
| 223 |
+
lines=5,
|
| 224 |
+
value="Tell me about artificial intelligence\nExplain quantum computing\nWhat is machine learning?",
|
| 225 |
+
placeholder="Enter your prompts here..."
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
with gr.Column():
|
| 229 |
+
num_steps_input = gr.Slider(
|
| 230 |
+
label="Number of Training Steps",
|
| 231 |
+
minimum=1,
|
| 232 |
+
maximum=100,
|
| 233 |
+
value=10,
|
| 234 |
+
step=1
|
| 235 |
+
)
|
| 236 |
+
lr_input = gr.Number(
|
| 237 |
+
label="Learning Rate",
|
| 238 |
+
value=1e-5,
|
| 239 |
+
step=1e-6
|
| 240 |
+
)
|
| 241 |
+
beta_input = gr.Number(
|
| 242 |
+
label="KL Penalty Weight (Ξ²)",
|
| 243 |
+
value=0.1,
|
| 244 |
+
step=0.01
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
train_btn = gr.Button("Start Training", variant="primary")
|
| 248 |
+
training_output = gr.Textbox(label="Training Progress", lines=10)
|
| 249 |
+
|
| 250 |
+
train_btn.click(
|
| 251 |
+
train_interface,
|
| 252 |
+
inputs=[prompts_input, num_steps_input, lr_input, beta_input],
|
| 253 |
+
outputs=training_output
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
with gr.Tab("π¬ Generation"):
|
| 257 |
+
with gr.Row():
|
| 258 |
+
with gr.Column():
|
| 259 |
+
gen_prompt = gr.Textbox(
|
| 260 |
+
label="Prompt",
|
| 261 |
+
placeholder="Enter your prompt here...",
|
| 262 |
+
value="Tell me about"
|
| 263 |
+
)
|
| 264 |
+
max_length = gr.Slider(
|
| 265 |
+
label="Max Length",
|
| 266 |
+
minimum=10,
|
| 267 |
+
maximum=500,
|
| 268 |
+
value=100,
|
| 269 |
+
step=10
|
| 270 |
+
)
|
| 271 |
+
temp_slider = gr.Slider(
|
| 272 |
+
label="Temperature",
|
| 273 |
+
minimum=0.1,
|
| 274 |
+
maximum=2.0,
|
| 275 |
+
value=0.8,
|
| 276 |
+
step=0.1
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
with gr.Column():
|
| 280 |
+
gen_btn = gr.Button("Generate", variant="primary")
|
| 281 |
+
gen_output = gr.Textbox(label="Generated Response", lines=10)
|
| 282 |
+
|
| 283 |
+
gen_btn.click(
|
| 284 |
+
generate_interface,
|
| 285 |
+
inputs=[gen_prompt, max_length, temp_slider],
|
| 286 |
+
outputs=gen_output
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
with gr.Tab("πΎ Save Model"):
|
| 290 |
+
save_path_input = gr.Textbox(
|
| 291 |
+
label="Save Path",
|
| 292 |
+
value="./grpo_trained_model",
|
| 293 |
+
placeholder="Enter path to save the model"
|
| 294 |
+
)
|
| 295 |
+
save_btn = gr.Button("Save Model", variant="primary")
|
| 296 |
+
save_status = gr.Textbox(label="Save Status")
|
| 297 |
+
|
| 298 |
+
save_btn.click(save_model_interface, inputs=save_path_input, outputs=save_status)
|
| 299 |
+
|
| 300 |
+
with gr.Tab("π Training History"):
|
| 301 |
+
history_btn = gr.Button("Refresh History", variant="secondary")
|
| 302 |
+
history_output = gr.Textbox(label="Training History", lines=15)
|
| 303 |
+
|
| 304 |
+
history_btn.click(get_training_history, outputs=history_output)
|
| 305 |
+
|
| 306 |
+
gr.Markdown("""
|
| 307 |
+
## π Instructions:
|
| 308 |
+
1. **Load Model**: Start by loading a pre-trained model from HuggingFace
|
| 309 |
+
2. **Training**: Add your prompts and configure training parameters
|
| 310 |
+
3. **Generation**: Test your trained model with custom prompts
|
| 311 |
+
4. **Save**: Save your fine-tuned model for later use
|
| 312 |
+
|
| 313 |
+
## β οΈ Note:
|
| 314 |
+
- This is a simplified GRPO implementation for demonstration
|
| 315 |
+
- For production use, consider more sophisticated reward functions
|
| 316 |
+
- GPU recommended for larger models
|
| 317 |
+
""")
|
| 318 |
+
|
| 319 |
+
# Launch the app
|
| 320 |
+
if __name__ == "__main__":
|
| 321 |
+
app.launch(share=True)
|