Spaces:
Running
on
Zero
Running
on
Zero
| import random | |
| import numpy as np | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from diffusers import FluxFillPipeline | |
| MAX_SEED = np.iinfo(np.int32).max | |
| pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16) | |
| lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA" | |
| trigger_word = "Super Realism" | |
| lora_repo_2 = "strangerzonehf/Flux-SuperPortrait-v2-LoRA" | |
| trigger_word_2 = "Super Portrait v2" | |
| pipe.load_lora_weights(lora_repo) | |
| pipe.load_lora_weights(lora_repo_2) | |
| pipe.to("cuda") | |
| # reference https://huggingface.co/spaces/black-forest-labs/FLUX.1-Fill-dev/blob/main/app.py | |
| def calculate_optimal_dimensions(image): | |
| # Extract the original dimensions | |
| original_width, original_height = image.size | |
| # Set constants | |
| MIN_ASPECT_RATIO = 9 / 16 | |
| MAX_ASPECT_RATIO = 16 / 9 | |
| FIXED_DIMENSION = 1024 | |
| # Calculate the aspect ratio of the original image | |
| original_aspect_ratio = original_width / original_height | |
| # Determine which dimension to fix | |
| if original_aspect_ratio > 1: # Wider than tall | |
| width = FIXED_DIMENSION | |
| height = round(FIXED_DIMENSION / original_aspect_ratio) | |
| else: # Taller than wide | |
| height = FIXED_DIMENSION | |
| width = round(FIXED_DIMENSION * original_aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| width = (width // 8) * 8 | |
| height = (height // 8) * 8 | |
| # Enforce aspect ratio limits | |
| calculated_aspect_ratio = width / height | |
| if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
| width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
| elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
| height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
| # Ensure width and height remain above the minimum dimensions | |
| width = max(width, 576) if width == FIXED_DIMENSION else width | |
| height = max(height, 576) if height == FIXED_DIMENSION else height | |
| return width, height | |
| def inpaint( | |
| image, | |
| mask, | |
| prompt="", | |
| seed=0, | |
| num_inference_steps=28, | |
| guidance_scale=50, | |
| ): | |
| image = image.convert("RGB") | |
| mask = mask.convert("L") | |
| width, height = calculate_optimal_dimensions(image) | |
| final_prompt = "" | |
| if trigger_word: | |
| prompt = f"{trigger_word}\n\n" | |
| if trigger_word_2: | |
| prompt = f"{trigger_word_2}\n\n" | |
| final_prompt += prompt | |
| if not isinstance(seed, int) or seed <= 0: | |
| seed = random.randint(0, MAX_SEED) | |
| result = pipe( | |
| image=image, | |
| mask_image=mask, | |
| prompt=final_prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator = torch.Generator().manual_seed(seed) | |
| ).images[0] | |
| result = result.convert("RGBA") | |
| return result, final_prompt, seed | |
| demo = gr.Interface( | |
| fn=inpaint, | |
| inputs=[ | |
| gr.Image(label="image", type="pil"), | |
| gr.Image(label="mask", type="pil"), | |
| gr.Text(label="prompt", lines=4), | |
| gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| info="(0 = Random)" | |
| ), | |
| gr.Number(value=40, label="num_inference_steps"), | |
| gr.Number(value=28, label="guidance_scale"), | |
| ], | |
| outputs=[ | |
| gr.Image(label="Result"), | |
| gr.Text(label="Prompt used", lines=4), | |
| gr.Number(label="Seed") | |
| ], | |
| api_name="inpaint", | |
| examples=[["./assets/rocket.png", "./assets/Inpainting mask.png"]], | |
| cache_examples=False | |
| ) | |
| demo.launch() |