Update app.py
Browse files
app.py
CHANGED
|
@@ -137,77 +137,77 @@ if st.button('Сгенерировать потери'):
|
|
| 137 |
|
| 138 |
|
| 139 |
|
| 140 |
-
data_clean, samplerate = torchaudio.load('target.wav')
|
| 141 |
-
data_lossy, samplerate = torchaudio.load('lossy.wav')
|
| 142 |
-
data_enhanced, samplerate = torchaudio.load('enhanced.wav')
|
| 143 |
|
| 144 |
-
min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
|
| 145 |
-
data_clean = data_clean[:, :min_len]
|
| 146 |
-
data_lossy = data_lossy[:, :min_len]
|
| 147 |
-
data_enhanced = data_enhanced[:, :min_len]
|
| 148 |
|
| 149 |
|
| 150 |
-
stoi = STOI(samplerate)
|
| 151 |
|
| 152 |
-
stoi_orig = round(float(stoi(data_clean, data_clean)),3)
|
| 153 |
-
stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
|
| 154 |
-
stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
|
| 155 |
|
| 156 |
-
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
| 157 |
|
| 158 |
|
| 159 |
-
pesq = PESQ(8000, 'nb')
|
| 160 |
|
| 161 |
-
data_clean = data_clean.cpu().numpy()
|
| 162 |
-
data_lossy = data_lossy.cpu().numpy()
|
| 163 |
-
data_enhanced = data_enhanced.cpu().numpy()
|
| 164 |
|
| 165 |
-
if samplerate != 8000:
|
| 166 |
-
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
|
| 167 |
-
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
|
| 168 |
-
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
|
| 169 |
|
| 170 |
-
pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
|
| 171 |
-
pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
|
| 172 |
-
pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
|
| 173 |
|
| 174 |
-
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
| 175 |
|
| 176 |
|
| 177 |
|
| 178 |
|
| 179 |
|
| 180 |
#_____________________________________________
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
|
| 196 |
|
| 197 |
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
|
| 204 |
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
|
| 212 |
|
| 213 |
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
|
| 140 |
+
#data_clean, samplerate = torchaudio.load('target.wav')
|
| 141 |
+
#data_lossy, samplerate = torchaudio.load('lossy.wav')
|
| 142 |
+
#data_enhanced, samplerate = torchaudio.load('enhanced.wav')
|
| 143 |
|
| 144 |
+
#min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
|
| 145 |
+
#data_clean = data_clean[:, :min_len]
|
| 146 |
+
#data_lossy = data_lossy[:, :min_len]
|
| 147 |
+
#data_enhanced = data_enhanced[:, :min_len]
|
| 148 |
|
| 149 |
|
| 150 |
+
#stoi = STOI(samplerate)
|
| 151 |
|
| 152 |
+
#stoi_orig = round(float(stoi(data_clean, data_clean)),3)
|
| 153 |
+
#stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
|
| 154 |
+
#stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
|
| 155 |
|
| 156 |
+
#stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
| 157 |
|
| 158 |
|
| 159 |
+
#pesq = PESQ(8000, 'nb')
|
| 160 |
|
| 161 |
+
#data_clean = data_clean.cpu().numpy()
|
| 162 |
+
#data_lossy = data_lossy.cpu().numpy()
|
| 163 |
+
#data_enhanced = data_enhanced.cpu().numpy()
|
| 164 |
|
| 165 |
+
#if samplerate != 8000:
|
| 166 |
+
#data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
|
| 167 |
+
#data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
|
| 168 |
+
#data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
|
| 169 |
|
| 170 |
+
#pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
|
| 171 |
+
#pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
|
| 172 |
+
#pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
|
| 173 |
|
| 174 |
+
#psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
| 175 |
|
| 176 |
|
| 177 |
|
| 178 |
|
| 179 |
|
| 180 |
#_____________________________________________
|
| 181 |
+
data_clean, samplerate = sf.read('target.wav')
|
| 182 |
+
data_lossy, samplerate = sf.read('lossy.wav')
|
| 183 |
+
data_enhanced, samplerate = sf.read('enhanced.wav')
|
| 184 |
+
min_len = min(data_clean.shape[0], data_lossy.shape[0], data_enhanced.shape[0])
|
| 185 |
+
data_clean = data_clean[:min_len]
|
| 186 |
+
data_lossy = data_lossy[:min_len]
|
| 187 |
+
data_enhanced = data_enhanced[:min_len]
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
stoi_orig = round(stoi(data_clean, data_clean, samplerate, extended=False),5)
|
| 191 |
+
stoi_lossy = round(stoi(data_clean, data_lossy , samplerate, extended=False),5)
|
| 192 |
+
stoi_enhanced = round(stoi(data_clean, data_enhanced, samplerate, extended=False),5)
|
| 193 |
|
| 194 |
+
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
| 195 |
|
| 196 |
|
| 197 |
|
| 198 |
|
| 199 |
+
if samplerate != 8000:
|
| 200 |
+
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
|
| 201 |
+
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
|
| 202 |
+
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
|
| 203 |
|
| 204 |
|
| 205 |
|
| 206 |
+
pesq_orig = pesq(fs = 8000, ref = data_clean, deg = data_clean, mode='nb')
|
| 207 |
+
pesq_lossy = pesq(fs = 8000, ref = data_clean, deg = data_lossy, mode='nb')
|
| 208 |
+
pesq_enhanced = pesq(fs = 8000, ref = data_clean, deg = data_enhanced, mode='nb')
|
| 209 |
|
| 210 |
+
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
| 211 |
|
| 212 |
|
| 213 |
|