Update app.py
Browse files
app.py
CHANGED
|
@@ -163,6 +163,18 @@ re_im = torch.stft(lossy_input_tensor, window, stride, window=hann, return_compl
|
|
| 163 |
|
| 164 |
session, onnx_model, input_names, output_names = load_model(model_ver)
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
if st.button('Сгенерировать потери'):
|
| 167 |
with st.spinner('Ожидайте...'):
|
| 168 |
start_time = time.time()
|
|
@@ -174,11 +186,11 @@ if st.button('Сгенерировать потери'):
|
|
| 174 |
tab1, tab2 = st.tabs(["Частотная", "Временная"])
|
| 175 |
|
| 176 |
with tab1:
|
| 177 |
-
st.header("Частотная область
|
| 178 |
st.pyplot(fig_1)
|
| 179 |
|
| 180 |
with tab2:
|
| 181 |
-
st.header("Временная область
|
| 182 |
st.pyplot(fig_2)
|
| 183 |
|
| 184 |
|
|
@@ -425,9 +437,9 @@ if st.button('Сгенерировать потери'):
|
|
| 425 |
st.bar_chart(df_1, x="Audio", y="WER")
|
| 426 |
|
| 427 |
|
| 428 |
-
col1, col2, col3, col4, col5 = st.columns(5)
|
| 429 |
-
col1.metric("PESQ", value = psq_mas[-1], delta = psq_mas[-1] - psq_mas[-2])
|
| 430 |
-
col2.metric("STOI", value = stoi_mass[-1], delta = stoi_mass[-1] - stoi_mass[-2])
|
| 431 |
-
col3.metric("PLCMOSv1", value = PLC_massv1[-1], delta = PLC_massv1[-1] - PLC_massv1[-2])
|
| 432 |
-
col4.metric("PLCMOSv2", value = PLC_massv2[-1], delta = PLC_massv2[-1] - PLC_massv2[-2])
|
| 433 |
-
col5.metric("WER", value = WER_mass[-1], delta = WER_mass[-1] - WER_mass[-2], delta_color="inverse")
|
|
|
|
| 163 |
|
| 164 |
session, onnx_model, input_names, output_names = load_model(model_ver)
|
| 165 |
|
| 166 |
+
with st.sidebar:
|
| 167 |
+
st.title('Full-band Reccurent Network')
|
| 168 |
+
st.header("Метрики")
|
| 169 |
+
st.subheader("PESQ")
|
| 170 |
+
st.text('Перцептивная оценка качества речи - https://ieeexplore.ieee.org/document/941023')
|
| 171 |
+
st.subheader("STOI")
|
| 172 |
+
st.text('Индекс объективной кратковременной разборчивости - https://ieeexplore.ieee.org/document/5495701')
|
| 173 |
+
st.subheader("PLCMOS_v1&2")
|
| 174 |
+
st.text('эталонная и неэталонная метрики https://arxiv.org/abs/2305.15127')
|
| 175 |
+
st.subheader("WER")
|
| 176 |
+
st.text('Процент нераспознанных слов - https://deepgram.com/learn/what-is-word-error-rate')
|
| 177 |
+
|
| 178 |
if st.button('Сгенерировать потери'):
|
| 179 |
with st.spinner('Ожидайте...'):
|
| 180 |
start_time = time.time()
|
|
|
|
| 186 |
tab1, tab2 = st.tabs(["Частотная", "Временная"])
|
| 187 |
|
| 188 |
with tab1:
|
| 189 |
+
st.header("Частотная область")
|
| 190 |
st.pyplot(fig_1)
|
| 191 |
|
| 192 |
with tab2:
|
| 193 |
+
st.header("Временная область")
|
| 194 |
st.pyplot(fig_2)
|
| 195 |
|
| 196 |
|
|
|
|
| 437 |
st.bar_chart(df_1, x="Audio", y="WER")
|
| 438 |
|
| 439 |
|
| 440 |
+
#col1, col2, col3, col4, col5 = st.columns(5)
|
| 441 |
+
#col1.metric("PESQ", value = psq_mas[-1], delta = psq_mas[-1] - psq_mas[-2])
|
| 442 |
+
#col2.metric("STOI", value = stoi_mass[-1], delta = stoi_mass[-1] - stoi_mass[-2])
|
| 443 |
+
#col3.metric("PLCMOSv1", value = PLC_massv1[-1], delta = PLC_massv1[-1] - PLC_massv1[-2])
|
| 444 |
+
#col4.metric("PLCMOSv2", value = PLC_massv2[-1], delta = PLC_massv2[-1] - PLC_massv2[-2])
|
| 445 |
+
#col5.metric("WER", value = WER_mass[-1], delta = WER_mass[-1] - WER_mass[-2], delta_color="inverse")
|