Spaces:
Sleeping
Sleeping
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Confusion Matrix.""" | |
| import datasets | |
| from sklearn.metrics import confusion_matrix | |
| import evaluate | |
| _DESCRIPTION = """ | |
| The confusion matrix evaluates classification accuracy. Each row in a confusion matrix represents a true class and each column represents the instances in a predicted class | |
| """ | |
| _KWARGS_DESCRIPTION = """ | |
| Args: | |
| predictions (`list` of `int`): Predicted labels. | |
| references (`list` of `int`): Ground truth labels. | |
| labels (`list` of `int`): List of labels to index the matrix. This may be used to reorder or select a subset of labels. | |
| sample_weight (`list` of `float`): Sample weights. | |
| normalize (`str`): Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. | |
| Returns: | |
| confusion_matrix (`list` of `list` of `int`): Confusion matrix whose i-th row and j-th column entry indicates the number of samples with true label being i-th class and predicted label being j-th class. | |
| Examples: | |
| Example 1-A simple example | |
| >>> confusion_matrix_metric = evaluate.load("confusion_matrix") | |
| >>> results = confusion_matrix_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0]) | |
| >>> print(results) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE | |
| {'confusion_matrix': array([[1, 0, 1], [0, 2, 0], [1, 1, 0]][...])} | |
| """ | |
| _CITATION = """ | |
| @article{scikit-learn, | |
| title={Scikit-learn: Machine Learning in {P}ython}, | |
| author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. | |
| and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. | |
| and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and | |
| Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, | |
| journal={Journal of Machine Learning Research}, | |
| volume={12}, | |
| pages={2825--2830}, | |
| year={2011} | |
| } | |
| """ | |
| class ConfusionMatrix(evaluate.Metric): | |
| def _info(self): | |
| return evaluate.MetricInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "predictions": datasets.Sequence(datasets.Value("int32")), | |
| "references": datasets.Sequence(datasets.Value("int32")), | |
| } | |
| if self.config_name == "multilabel" | |
| else { | |
| "predictions": datasets.Value("int32"), | |
| "references": datasets.Value("int32"), | |
| } | |
| ), | |
| reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html"], | |
| ) | |
| def _compute(self, predictions, references, labels=None, sample_weight=None, normalize=None): | |
| return { | |
| "confusion_matrix": confusion_matrix( | |
| references, predictions, labels=labels, sample_weight=sample_weight, normalize=normalize | |
| ) | |
| } | |