Spaces:
Sleeping
Sleeping
| # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """sMAPE - Symmetric Mean Absolute Percentage Error Metric""" | |
| import datasets | |
| import numpy as np | |
| from sklearn.metrics._regression import _check_reg_targets | |
| from sklearn.utils.validation import check_consistent_length | |
| import evaluate | |
| _CITATION = """\ | |
| @article{article, | |
| author = {Chen, Zhuo and Yang, Yuhong}, | |
| year = {2004}, | |
| month = {04}, | |
| pages = {}, | |
| title = {Assessing forecast accuracy measures} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Symmetric Mean Absolute Percentage Error (sMAPE) is the symmetric mean percentage error | |
| difference between the predicted and actual values as defined by Chen and Yang (2004), | |
| based on the metric by Armstrong (1985) and Makridakis (1993). | |
| """ | |
| _KWARGS_DESCRIPTION = """ | |
| Args: | |
| predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) | |
| Estimated target values. | |
| references: array-like of shape (n_samples,) or (n_samples, n_outputs) | |
| Ground truth (correct) target values. | |
| sample_weight: array-like of shape (n_samples,), default=None | |
| Sample weights. | |
| multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" | |
| Defines aggregating of multiple output values. Array-like value defines weights used to average errors. | |
| "raw_values" : Returns a full set of errors in case of multioutput input. | |
| "uniform_average" : Errors of all outputs are averaged with uniform weight. | |
| Returns: | |
| smape : symmetric mean absolute percentage error. | |
| If multioutput is "raw_values", then symmetric mean absolute percentage error is returned for each output separately. If multioutput is "uniform_average" or an ndarray of weights, then the weighted average of all output errors is returned. | |
| sMAPE output is non-negative floating point in the range (0, 2). The best value is 0.0. | |
| Examples: | |
| >>> smape_metric = evaluate.load("smape") | |
| >>> predictions = [2.5, 0.0, 2, 8] | |
| >>> references = [3, -0.5, 2, 7] | |
| >>> results = smape_metric.compute(predictions=predictions, references=references) | |
| >>> print(results) | |
| {'smape': 0.5787878787878785} | |
| If you're using multi-dimensional lists, then set the config as follows : | |
| >>> smape_metric = evaluate.load("smape", "multilist") | |
| >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] | |
| >>> references = [[0.1, 2], [-1, 2], [8, -5]] | |
| >>> results = smape_metric.compute(predictions=predictions, references=references) | |
| >>> print(results) | |
| {'smape': 0.49696969558995985} | |
| >>> results = smape_metric.compute(predictions=predictions, references=references, multioutput='raw_values') | |
| >>> print(results) | |
| {'smape': array([0.48888889, 0.50505051])} | |
| """ | |
| def symmetric_mean_absolute_percentage_error(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average"): | |
| """Symmetric Mean absolute percentage error (sMAPE) metric using sklearn's api and helpers. | |
| Parameters | |
| ---------- | |
| y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
| Ground truth (correct) target values. | |
| y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
| Estimated target values. | |
| sample_weight : array-like of shape (n_samples,), default=None | |
| Sample weights. | |
| multioutput : {'raw_values', 'uniform_average'} or array-like | |
| Defines aggregating of multiple output values. | |
| Array-like value defines weights used to average errors. | |
| If input is list then the shape must be (n_outputs,). | |
| 'raw_values' : | |
| Returns a full set of errors in case of multioutput input. | |
| 'uniform_average' : | |
| Errors of all outputs are averaged with uniform weight. | |
| Returns | |
| ------- | |
| loss : float or ndarray of floats | |
| If multioutput is 'raw_values', then mean absolute percentage error | |
| is returned for each output separately. | |
| If multioutput is 'uniform_average' or an ndarray of weights, then the | |
| weighted average of all output errors is returned. | |
| sMAPE output is non-negative floating point. The best value is 0.0. | |
| """ | |
| y_type, y_true, y_pred, multioutput = _check_reg_targets(y_true, y_pred, multioutput) | |
| check_consistent_length(y_true, y_pred, sample_weight) | |
| epsilon = np.finfo(np.float64).eps | |
| smape = 2 * np.abs(y_pred - y_true) / (np.maximum(np.abs(y_true), epsilon) + np.maximum(np.abs(y_pred), epsilon)) | |
| output_errors = np.average(smape, weights=sample_weight, axis=0) | |
| if isinstance(multioutput, str): | |
| if multioutput == "raw_values": | |
| return output_errors | |
| elif multioutput == "uniform_average": | |
| # pass None as weights to np.average: uniform mean | |
| multioutput = None | |
| return np.average(output_errors, weights=multioutput) | |
| class Smape(evaluate.Metric): | |
| def _info(self): | |
| return evaluate.MetricInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=datasets.Features(self._get_feature_types()), | |
| reference_urls=["https://robjhyndman.com/hyndsight/smape/"], | |
| ) | |
| def _get_feature_types(self): | |
| if self.config_name == "multilist": | |
| return { | |
| "predictions": datasets.Sequence(datasets.Value("float")), | |
| "references": datasets.Sequence(datasets.Value("float")), | |
| } | |
| else: | |
| return { | |
| "predictions": datasets.Value("float"), | |
| "references": datasets.Value("float"), | |
| } | |
| def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average"): | |
| smape_score = symmetric_mean_absolute_percentage_error( | |
| references, | |
| predictions, | |
| sample_weight=sample_weight, | |
| multioutput=multioutput, | |
| ) | |
| return {"smape": smape_score} | |