Spaces:
Sleeping
Sleeping
XS-dev
commited on
Commit
·
a5c42f2
1
Parent(s):
7105a67
按要求创建了文件夹,但是不知道tmd到底是什么文件在这个文件夹里面
Browse files- my-bert-model/config.json +23 -0
- my-bert-model/modeling_bert.py +95 -0
- my-bert-model/pytorch_model.bin +3 -0
- my-bert-model/tokenizer.json +0 -0
- my-bert-model/tokenizer_config.json +1 -0
- my-bert-model/utils_data.py +45 -0
- my-bert-model/vocab.txt +0 -0
my-bert-model/config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"gradient_checkpointing": false,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 768,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 3072,
|
| 12 |
+
"layer_norm_eps": 1e-12,
|
| 13 |
+
"max_position_embeddings": 512,
|
| 14 |
+
"model_type": "bert",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 12,
|
| 17 |
+
"pad_token_id": 0,
|
| 18 |
+
"position_embedding_type": "absolute",
|
| 19 |
+
"transformers_version": "4.6.0.dev0",
|
| 20 |
+
"type_vocab_size": 2,
|
| 21 |
+
"use_cache": true,
|
| 22 |
+
"vocab_size": 30522
|
| 23 |
+
}
|
my-bert-model/modeling_bert.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple, Union
|
| 2 |
+
import torch
|
| 3 |
+
import torch.utils.checkpoint
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 6 |
+
from transformers import BertPreTrainedModel, BertModel
|
| 7 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
| 11 |
+
def __init__(self, config):
|
| 12 |
+
super().__init__(config)
|
| 13 |
+
self.num_labels = config.num_labels
|
| 14 |
+
self.config = config
|
| 15 |
+
|
| 16 |
+
self.bert = BertModel(config)
|
| 17 |
+
classifier_dropout = (
|
| 18 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 19 |
+
)
|
| 20 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 21 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 22 |
+
|
| 23 |
+
# Initialize weights and apply final processing
|
| 24 |
+
self.post_init()
|
| 25 |
+
|
| 26 |
+
def forward(
|
| 27 |
+
self,
|
| 28 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 29 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 30 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 31 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 32 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 33 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 34 |
+
labels: Optional[torch.Tensor] = None,
|
| 35 |
+
output_attentions: Optional[bool] = None,
|
| 36 |
+
output_hidden_states: Optional[bool] = None,
|
| 37 |
+
return_dict: Optional[bool] = None,
|
| 38 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 39 |
+
r"""
|
| 40 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 41 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 42 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 43 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 44 |
+
"""
|
| 45 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 46 |
+
|
| 47 |
+
outputs = self.bert(
|
| 48 |
+
input_ids,
|
| 49 |
+
attention_mask=attention_mask,
|
| 50 |
+
token_type_ids=token_type_ids,
|
| 51 |
+
position_ids=position_ids,
|
| 52 |
+
head_mask=head_mask,
|
| 53 |
+
inputs_embeds=inputs_embeds,
|
| 54 |
+
output_attentions=output_attentions,
|
| 55 |
+
output_hidden_states=output_hidden_states,
|
| 56 |
+
return_dict=return_dict,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
pooled_output = outputs[1]
|
| 60 |
+
|
| 61 |
+
pooled_output = self.dropout(pooled_output)
|
| 62 |
+
logits = self.classifier(pooled_output)
|
| 63 |
+
|
| 64 |
+
loss = None
|
| 65 |
+
if labels is not None:
|
| 66 |
+
if self.config.problem_type is None:
|
| 67 |
+
if self.num_labels == 1:
|
| 68 |
+
self.config.problem_type = "regression"
|
| 69 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 70 |
+
self.config.problem_type = "single_label_classification"
|
| 71 |
+
else:
|
| 72 |
+
self.config.problem_type = "multi_label_classification"
|
| 73 |
+
|
| 74 |
+
if self.config.problem_type == "regression":
|
| 75 |
+
loss_fct = MSELoss()
|
| 76 |
+
if self.num_labels == 1:
|
| 77 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 78 |
+
else:
|
| 79 |
+
loss = loss_fct(logits, labels)
|
| 80 |
+
elif self.config.problem_type == "single_label_classification":
|
| 81 |
+
loss_fct = CrossEntropyLoss()
|
| 82 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 83 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 84 |
+
loss_fct = BCEWithLogitsLoss()
|
| 85 |
+
loss = loss_fct(logits, labels)
|
| 86 |
+
if not return_dict:
|
| 87 |
+
output = (logits,) + outputs[2:]
|
| 88 |
+
return ((loss,) + output) if loss is not None else output
|
| 89 |
+
|
| 90 |
+
return SequenceClassifierOutput(
|
| 91 |
+
loss=loss,
|
| 92 |
+
logits=logits,
|
| 93 |
+
hidden_states=outputs.hidden_states,
|
| 94 |
+
attentions=outputs.attentions,
|
| 95 |
+
)
|
my-bert-model/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:097417381d6c7230bd9e3557456d726de6e83245ec8b24f529f60198a67b203a
|
| 3 |
+
size 440473133
|
my-bert-model/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
my-bert-model/tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"do_lower_case": true, "model_max_length": 512}
|
my-bert-model/utils_data.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch.utils.data import Dataset
|
| 2 |
+
import torch
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
def load_data(args, split):
|
| 6 |
+
df = pd.read_csv(f"{args.data_root}/{split}.csv")
|
| 7 |
+
texts = df['text'].values.tolist()
|
| 8 |
+
labels = df['target'].values.tolist()
|
| 9 |
+
return texts, labels
|
| 10 |
+
|
| 11 |
+
class MyDataset(Dataset):
|
| 12 |
+
def __init__(self, data, tokenizer, max_length, is_test):
|
| 13 |
+
self.tokenizer = tokenizer
|
| 14 |
+
self.max_length = max_length
|
| 15 |
+
self.texts = data[0]
|
| 16 |
+
self.labels = data[1]
|
| 17 |
+
self.is_test = is_test
|
| 18 |
+
|
| 19 |
+
def __len__(self):
|
| 20 |
+
"""returns the length of dataframe"""
|
| 21 |
+
return len(self.texts)
|
| 22 |
+
|
| 23 |
+
def __getitem__(self, index):
|
| 24 |
+
"""return the input ids, attention masks and target ids"""
|
| 25 |
+
text = str(self.texts[index])
|
| 26 |
+
source = self.tokenizer.batch_encode_plus(
|
| 27 |
+
[text],
|
| 28 |
+
max_length=self.max_length,
|
| 29 |
+
pad_to_max_length=True,
|
| 30 |
+
truncation=True,
|
| 31 |
+
padding="max_length",
|
| 32 |
+
return_tensors="pt",
|
| 33 |
+
)
|
| 34 |
+
source_ids = source["input_ids"].squeeze()
|
| 35 |
+
source_mask = source["attention_mask"].squeeze()
|
| 36 |
+
data_sample = {
|
| 37 |
+
"input_ids": source_ids,
|
| 38 |
+
"attention_mask": source_mask,
|
| 39 |
+
}
|
| 40 |
+
if not self.is_test:
|
| 41 |
+
label = self.labels[index]
|
| 42 |
+
target_ids = torch.tensor(label).squeeze()
|
| 43 |
+
data_sample["labels"] = target_ids
|
| 44 |
+
return data_sample
|
| 45 |
+
|
my-bert-model/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|