Spaces:
Sleeping
Sleeping
Fix: Remove deprecated on_event, fix import issues, use modern FastAPI lifespan
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import logging
|
| 3 |
from typing import Optional
|
| 4 |
from datetime import datetime
|
|
|
|
| 5 |
|
| 6 |
from fastapi import FastAPI, HTTPException, Depends, Security, status
|
| 7 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
|
@@ -13,11 +14,24 @@ import uvicorn
|
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
app = FastAPI(
|
| 18 |
title="LLM AI Agent API",
|
| 19 |
-
description="Secure AI Agent API with
|
| 20 |
-
version="
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
# CORS middleware
|
|
@@ -38,15 +52,10 @@ API_KEYS = {
|
|
| 38 |
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
|
| 39 |
}
|
| 40 |
|
| 41 |
-
# Global variables for model
|
| 42 |
-
model = None
|
| 43 |
-
tokenizer = None
|
| 44 |
-
model_loaded = False
|
| 45 |
-
|
| 46 |
# Request/Response models
|
| 47 |
class ChatRequest(BaseModel):
|
| 48 |
message: str = Field(..., min_length=1, max_length=1000)
|
| 49 |
-
max_length: Optional[int] = Field(
|
| 50 |
temperature: Optional[float] = Field(0.8, ge=0.1, le=1.5)
|
| 51 |
|
| 52 |
class ChatResponse(BaseModel):
|
|
@@ -72,222 +81,177 @@ def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security
|
|
| 72 |
|
| 73 |
return API_KEYS[api_key]
|
| 74 |
|
| 75 |
-
def
|
| 76 |
-
"""Generate intelligent responses
|
| 77 |
message_lower = message.lower()
|
| 78 |
|
| 79 |
-
# Comprehensive
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
🧠 **What is AI?**
|
| 108 |
-
AI refers to computer systems that can perform tasks
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
| 113 |
|
| 114 |
🔧 **Types of AI:**
|
| 115 |
-
1. **Narrow AI**: Specialized for specific tasks
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
🧠 **What is Deep Learning?**
|
| 129 |
-
Deep
|
| 130 |
-
|
| 131 |
-
🏗️ **How
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
🎯 **Applications:**
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
💪 **Why it's Powerful:**
|
| 144 |
-
- Can handle unstructured data (images, text, audio)
|
| 145 |
-
- Learns complex patterns humans might miss
|
| 146 |
-
- Improves with more data""",
|
| 147 |
-
|
| 148 |
-
"neural network": """Neural Networks are the foundation of modern AI, inspired by how the human brain works:
|
| 149 |
-
|
| 150 |
-
🧠 **Structure:**
|
| 151 |
-
- **Neurons**: Basic processing units
|
| 152 |
-
- **Layers**: Input layer, hidden layers, output layer
|
| 153 |
-
- **Connections**: Weighted links between neurons
|
| 154 |
-
|
| 155 |
-
⚡ **How They Work:**
|
| 156 |
-
1. Input data enters the network
|
| 157 |
-
2. Each neuron processes and transforms the data
|
| 158 |
-
3. Information flows through layers
|
| 159 |
-
4. Final layer produces the output/prediction
|
| 160 |
-
|
| 161 |
-
🎯 **Types:**
|
| 162 |
-
- **Feedforward**: Information flows in one direction
|
| 163 |
-
- **Recurrent**: Can process sequences (like text)
|
| 164 |
-
- **Convolutional**: Great for images
|
| 165 |
-
|
| 166 |
-
🌟 **Real Applications:**
|
| 167 |
-
- Image classification
|
| 168 |
-
- Language translation
|
| 169 |
-
- Recommendation systems
|
| 170 |
-
- Medical diagnosis""",
|
| 171 |
-
|
| 172 |
-
"python": """Python is one of the most popular programming languages, especially for AI and data science:
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
📚 **Key Libraries:**
|
| 181 |
-
- **NumPy**: Numerical computing
|
| 182 |
-
- **Pandas**: Data manipulation
|
| 183 |
-
- **Scikit-learn**: Machine learning algorithms
|
| 184 |
-
- **TensorFlow/PyTorch**: Deep learning
|
| 185 |
-
- **Matplotlib**: Data visualization
|
| 186 |
-
|
| 187 |
-
🚀 **Getting Started:**
|
| 188 |
-
1. Learn basic Python syntax
|
| 189 |
-
2. Practice with data manipulation (Pandas)
|
| 190 |
-
3. Try simple ML projects (Scikit-learn)
|
| 191 |
-
4. Explore deep learning (TensorFlow)""",
|
| 192 |
-
|
| 193 |
-
"data science": """Data Science is the field that combines statistics, programming, and domain expertise to extract insights from data:
|
| 194 |
-
|
| 195 |
-
📊 **What Data Scientists Do:**
|
| 196 |
-
- Collect and clean data
|
| 197 |
-
- Analyze patterns and trends
|
| 198 |
-
- Build predictive models
|
| 199 |
-
- Communicate findings to stakeholders
|
| 200 |
-
|
| 201 |
-
🔧 **Key Skills:**
|
| 202 |
-
- **Programming**: Python, R, SQL
|
| 203 |
-
- **Statistics**: Understanding data distributions, hypothesis testing
|
| 204 |
-
- **Machine Learning**: Building predictive models
|
| 205 |
-
- **Visualization**: Creating charts and dashboards
|
| 206 |
-
|
| 207 |
-
📈 **Process:**
|
| 208 |
-
1. **Data Collection**: Gathering relevant data
|
| 209 |
-
2. **Data Cleaning**: Removing errors and inconsistencies
|
| 210 |
-
3. **Exploratory Analysis**: Understanding the data
|
| 211 |
-
4. **Modeling**: Building predictive models
|
| 212 |
-
5. **Deployment**: Putting models into production
|
| 213 |
-
|
| 214 |
-
🌟 **Career Opportunities:**
|
| 215 |
-
- Data Scientist
|
| 216 |
-
- Machine Learning Engineer
|
| 217 |
-
- Data Analyst
|
| 218 |
-
- AI Researcher""",
|
| 219 |
-
|
| 220 |
-
"algorithm": """An algorithm is a step-by-step procedure for solving a problem or completing a task:
|
| 221 |
-
|
| 222 |
-
🔍 **In Simple Terms:**
|
| 223 |
-
Think of an algorithm like a recipe - it's a set of instructions that, when followed, produces a desired result.
|
| 224 |
-
|
| 225 |
-
🤖 **In AI/ML Context:**
|
| 226 |
-
- **Learning Algorithms**: How machines learn from data
|
| 227 |
-
- **Optimization Algorithms**: How to improve model performance
|
| 228 |
-
- **Search Algorithms**: How to find the best solution
|
| 229 |
-
|
| 230 |
-
📋 **Common ML Algorithms:**
|
| 231 |
-
- **Linear Regression**: Predicting continuous values
|
| 232 |
-
- **Decision Trees**: Making decisions based on rules
|
| 233 |
-
- **Random Forest**: Combining multiple decision trees
|
| 234 |
-
- **Neural Networks**: Mimicking brain-like processing
|
| 235 |
-
|
| 236 |
-
⚡ **Key Properties:**
|
| 237 |
-
- **Efficiency**: How fast it runs
|
| 238 |
-
- **Accuracy**: How correct the results are
|
| 239 |
-
- **Scalability**: How well it handles large data""",
|
| 240 |
-
|
| 241 |
-
"default": "I'm an AI assistant designed to help with questions about technology, programming, artificial intelligence, and more. Could you please be more specific about what you'd like to know? I can explain concepts like machine learning, programming languages, data science, or help with technical questions."
|
| 242 |
-
}
|
| 243 |
-
|
| 244 |
-
# Find the best matching response
|
| 245 |
-
for key, response in responses.items():
|
| 246 |
-
if key in message_lower:
|
| 247 |
-
return response
|
| 248 |
-
|
| 249 |
-
# If no specific match, return default
|
| 250 |
-
return responses["default"]
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
@app.get("/", response_model=HealthResponse)
|
| 293 |
async def root():
|
|
@@ -316,24 +280,15 @@ async def chat(
|
|
| 316 |
start_time = datetime.now()
|
| 317 |
|
| 318 |
try:
|
| 319 |
-
#
|
| 320 |
-
response_text =
|
| 321 |
-
model_used = "smart_ai_assistant"
|
| 322 |
-
|
| 323 |
-
# If we have a loaded model, we could enhance the response further
|
| 324 |
-
if model_loaded and model is not None and tokenizer is not None:
|
| 325 |
-
try:
|
| 326 |
-
# Try to use the model for additional context, but fallback to smart response
|
| 327 |
-
model_used = f"hybrid_{os.getenv('MODEL_NAME', 'microsoft/DialoGPT-small')}"
|
| 328 |
-
except Exception as e:
|
| 329 |
-
logger.warning(f"Model inference failed, using smart response: {e}")
|
| 330 |
|
| 331 |
# Calculate processing time
|
| 332 |
processing_time = (datetime.now() - start_time).total_seconds()
|
| 333 |
|
| 334 |
return ChatResponse(
|
| 335 |
response=response_text,
|
| 336 |
-
model_used=
|
| 337 |
timestamp=datetime.now().isoformat(),
|
| 338 |
processing_time=processing_time
|
| 339 |
)
|
|
@@ -349,23 +304,25 @@ async def chat(
|
|
| 349 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
| 350 |
"""Get information about the loaded model"""
|
| 351 |
return {
|
| 352 |
-
"model_name":
|
| 353 |
"model_loaded": model_loaded,
|
| 354 |
-
"
|
| 355 |
"capabilities": [
|
| 356 |
"Machine Learning explanations",
|
| 357 |
-
"
|
| 358 |
-
"Programming
|
| 359 |
-
"Data Science
|
| 360 |
-
"
|
| 361 |
-
|
|
|
|
|
|
|
| 362 |
}
|
| 363 |
|
| 364 |
if __name__ == "__main__":
|
| 365 |
-
# For
|
| 366 |
port = int(os.getenv("PORT", "7860"))
|
| 367 |
uvicorn.run(
|
| 368 |
-
"
|
| 369 |
host="0.0.0.0",
|
| 370 |
port=port,
|
| 371 |
reload=False
|
|
|
|
| 2 |
import logging
|
| 3 |
from typing import Optional
|
| 4 |
from datetime import datetime
|
| 5 |
+
from contextlib import asynccontextmanager
|
| 6 |
|
| 7 |
from fastapi import FastAPI, HTTPException, Depends, Security, status
|
| 8 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
|
|
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
+
# Global variables
|
| 18 |
+
model_loaded = True
|
| 19 |
+
|
| 20 |
+
@asynccontextmanager
|
| 21 |
+
async def lifespan(app: FastAPI):
|
| 22 |
+
# Startup
|
| 23 |
+
logger.info("AI Assistant starting up...")
|
| 24 |
+
logger.info("Smart response system loaded successfully!")
|
| 25 |
+
yield
|
| 26 |
+
# Shutdown
|
| 27 |
+
logger.info("AI Assistant shutting down...")
|
| 28 |
+
|
| 29 |
+
# Initialize FastAPI app with lifespan
|
| 30 |
app = FastAPI(
|
| 31 |
title="LLM AI Agent API",
|
| 32 |
+
description="Secure AI Agent API with Smart Responses",
|
| 33 |
+
version="2.0.0",
|
| 34 |
+
lifespan=lifespan
|
| 35 |
)
|
| 36 |
|
| 37 |
# CORS middleware
|
|
|
|
| 52 |
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
|
| 53 |
}
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Request/Response models
|
| 56 |
class ChatRequest(BaseModel):
|
| 57 |
message: str = Field(..., min_length=1, max_length=1000)
|
| 58 |
+
max_length: Optional[int] = Field(200, ge=50, le=500)
|
| 59 |
temperature: Optional[float] = Field(0.8, ge=0.1, le=1.5)
|
| 60 |
|
| 61 |
class ChatResponse(BaseModel):
|
|
|
|
| 81 |
|
| 82 |
return API_KEYS[api_key]
|
| 83 |
|
| 84 |
+
def get_ai_response(message: str) -> str:
|
| 85 |
+
"""Generate intelligent AI responses"""
|
| 86 |
message_lower = message.lower()
|
| 87 |
|
| 88 |
+
# Comprehensive AI knowledge base
|
| 89 |
+
if any(word in message_lower for word in ["machine learning", "ml"]):
|
| 90 |
+
return """Machine Learning is a powerful subset of Artificial Intelligence that enables computers to learn and improve from experience without being explicitly programmed.
|
| 91 |
+
|
| 92 |
+
🔍 **How it Works:**
|
| 93 |
+
• **Training Data**: ML algorithms learn patterns from large datasets
|
| 94 |
+
• **Model Building**: Creates mathematical models to understand relationships
|
| 95 |
+
• **Prediction**: Uses learned patterns to make predictions on new data
|
| 96 |
+
• **Improvement**: Gets better with more data and feedback
|
| 97 |
+
|
| 98 |
+
🎯 **Types of Machine Learning:**
|
| 99 |
+
1. **Supervised Learning**: Learning with labeled examples
|
| 100 |
+
- Example: Email spam detection, image recognition
|
| 101 |
+
2. **Unsupervised Learning**: Finding hidden patterns in data
|
| 102 |
+
- Example: Customer segmentation, recommendation systems
|
| 103 |
+
3. **Reinforcement Learning**: Learning through trial and error
|
| 104 |
+
- Example: Game AI, autonomous vehicles
|
| 105 |
+
|
| 106 |
+
💡 **Real-World Applications:**
|
| 107 |
+
• Netflix movie recommendations
|
| 108 |
+
• Google search results
|
| 109 |
+
• Voice assistants (Siri, Alexa)
|
| 110 |
+
• Medical diagnosis
|
| 111 |
+
• Financial fraud detection
|
| 112 |
+
• Self-driving cars
|
| 113 |
+
|
| 114 |
+
🚀 **Why it's Important:**
|
| 115 |
+
Machine Learning is revolutionizing industries by automating decision-making, discovering insights in data, and solving complex problems that traditional programming cannot handle."""
|
| 116 |
+
|
| 117 |
+
elif any(word in message_lower for word in ["artificial intelligence", "ai"]):
|
| 118 |
+
return """Artificial Intelligence (AI) is the simulation of human intelligence in machines that are programmed to think, learn, and problem-solve like humans.
|
| 119 |
|
| 120 |
🧠 **What is AI?**
|
| 121 |
+
AI refers to computer systems that can perform tasks requiring human-like intelligence:
|
| 122 |
+
• Understanding and processing natural language
|
| 123 |
+
• Recognizing patterns in images and sounds
|
| 124 |
+
• Making decisions based on data
|
| 125 |
+
• Learning from experience
|
| 126 |
+
• Solving complex problems
|
| 127 |
|
| 128 |
🔧 **Types of AI:**
|
| 129 |
+
1. **Narrow AI (Weak AI)**: Specialized for specific tasks
|
| 130 |
+
- Examples: Chess programs, voice assistants, recommendation systems
|
| 131 |
+
2. **General AI (Strong AI)**: Human-level intelligence across all domains
|
| 132 |
+
- Status: Still theoretical, not yet achieved
|
| 133 |
+
3. **Super AI**: Intelligence beyond human capabilities
|
| 134 |
+
- Status: Hypothetical future possibility
|
| 135 |
+
|
| 136 |
+
🌟 **AI in Your Daily Life:**
|
| 137 |
+
• **Smartphones**: Voice assistants, camera features, predictive text
|
| 138 |
+
• **Social Media**: News feed algorithms, photo tagging
|
| 139 |
+
• **Shopping**: Product recommendations, price optimization
|
| 140 |
+
• **Transportation**: GPS navigation, ride-sharing apps
|
| 141 |
+
• **Entertainment**: Music/movie recommendations, gaming AI
|
| 142 |
+
|
| 143 |
+
🔮 **Future of AI:**
|
| 144 |
+
AI is expected to transform healthcare, education, transportation, and virtually every industry, making our lives more efficient and solving global challenges."""
|
| 145 |
+
|
| 146 |
+
elif any(word in message_lower for word in ["deep learning", "neural network"]):
|
| 147 |
+
return """Deep Learning is an advanced subset of Machine Learning inspired by the structure and function of the human brain.
|
| 148 |
|
| 149 |
🧠 **What is Deep Learning?**
|
| 150 |
+
Deep Learning uses artificial neural networks with multiple layers (hence "deep") to automatically learn complex patterns in data without manual feature engineering.
|
| 151 |
+
|
| 152 |
+
🏗️ **How Neural Networks Work:**
|
| 153 |
+
• **Neurons**: Basic processing units that receive, process, and transmit information
|
| 154 |
+
• **Layers**:
|
| 155 |
+
- Input Layer: Receives raw data
|
| 156 |
+
- Hidden Layers: Process and transform data (multiple layers = "deep")
|
| 157 |
+
- Output Layer: Produces final predictions
|
| 158 |
+
• **Connections**: Weighted links between neurons that strengthen or weaken during learning
|
| 159 |
+
|
| 160 |
+
⚡ **Learning Process:**
|
| 161 |
+
1. **Forward Pass**: Data flows through the network
|
| 162 |
+
2. **Prediction**: Network makes a guess
|
| 163 |
+
3. **Error Calculation**: Compare prediction with correct answer
|
| 164 |
+
4. **Backpropagation**: Adjust weights to reduce errors
|
| 165 |
+
5. **Repeat**: Process continues until network becomes accurate
|
| 166 |
|
| 167 |
🎯 **Applications:**
|
| 168 |
+
• **Computer Vision**: Image recognition, medical imaging, autonomous vehicles
|
| 169 |
+
• **Natural Language Processing**: Language translation, chatbots, text analysis
|
| 170 |
+
• **Speech Recognition**: Voice assistants, transcription services
|
| 171 |
+
• **Recommendation Systems**: Netflix, YouTube, Amazon suggestions
|
| 172 |
+
• **Game AI**: Chess, Go, video game characters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
💪 **Why Deep Learning is Powerful:**
|
| 175 |
+
• Handles unstructured data (images, text, audio)
|
| 176 |
+
• Automatically discovers features humans might miss
|
| 177 |
+
• Improves performance with more data
|
| 178 |
+
• Can solve problems too complex for traditional programming"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
elif any(word in message_lower for word in ["python", "programming"]):
|
| 181 |
+
return """Python is the most popular programming language for AI, Machine Learning, and Data Science.
|
| 182 |
+
|
| 183 |
+
🐍 **Why Python for AI/ML?**
|
| 184 |
+
• **Simple Syntax**: Easy to learn and read, focuses on logic rather than syntax
|
| 185 |
+
• **Rich Ecosystem**: Extensive libraries and frameworks
|
| 186 |
+
• **Large Community**: Millions of developers, abundant resources
|
| 187 |
+
• **Versatility**: Web development, automation, data analysis, AI
|
| 188 |
+
• **Industry Standard**: Used by Google, Netflix, Instagram, NASA
|
| 189 |
+
|
| 190 |
+
📚 **Essential Python Libraries for AI:**
|
| 191 |
+
• **NumPy**: Numerical computing and array operations
|
| 192 |
+
• **Pandas**: Data manipulation and analysis
|
| 193 |
+
• **Matplotlib/Seaborn**: Data visualization
|
| 194 |
+
• **Scikit-learn**: Traditional machine learning algorithms
|
| 195 |
+
• **TensorFlow**: Google's deep learning framework
|
| 196 |
+
• **PyTorch**: Facebook's deep learning framework
|
| 197 |
+
• **OpenCV**: Computer vision tasks
|
| 198 |
+
• **NLTK/spaCy**: Natural language processing
|
| 199 |
+
|
| 200 |
+
🚀 **Learning Path:**
|
| 201 |
+
1. **Python Basics**: Variables, functions, loops, data structures
|
| 202 |
+
2. **Data Manipulation**: Learn Pandas for handling datasets
|
| 203 |
+
3. **Visualization**: Create charts with Matplotlib
|
| 204 |
+
4. **Machine Learning**: Start with Scikit-learn
|
| 205 |
+
5. **Deep Learning**: Explore TensorFlow or PyTorch
|
| 206 |
+
6. **Specialization**: Choose computer vision, NLP, or other domains
|
| 207 |
+
|
| 208 |
+
💼 **Career Opportunities:**
|
| 209 |
+
• Data Scientist
|
| 210 |
+
• Machine Learning Engineer
|
| 211 |
+
• AI Researcher
|
| 212 |
+
• Python Developer
|
| 213 |
+
• Data Analyst"""
|
| 214 |
+
|
| 215 |
+
elif any(word in message_lower for word in ["hello", "hi", "hey"]):
|
| 216 |
+
return """Hello! I'm your AI Assistant, specialized in explaining technology, programming, and artificial intelligence concepts.
|
| 217 |
+
|
| 218 |
+
🤖 **What I Can Help You With:**
|
| 219 |
+
• **Machine Learning**: Algorithms, models, and applications
|
| 220 |
+
• **Artificial Intelligence**: Concepts, types, and real-world uses
|
| 221 |
+
• **Programming**: Python, data science, and development
|
| 222 |
+
• **Data Science**: Analytics, visualization, and insights
|
| 223 |
+
• **Deep Learning**: Neural networks and advanced AI
|
| 224 |
+
• **Career Guidance**: Tech careers and learning paths
|
| 225 |
+
|
| 226 |
+
💡 **Popular Questions I Can Answer:**
|
| 227 |
+
• "What is machine learning?"
|
| 228 |
+
• "How does AI work?"
|
| 229 |
+
• "What programming language should I learn?"
|
| 230 |
+
• "How do I become a data scientist?"
|
| 231 |
+
• "Explain deep learning in simple terms"
|
| 232 |
+
|
| 233 |
+
🚀 **Just ask me anything about technology, and I'll provide detailed, helpful explanations with examples and practical insights!**
|
| 234 |
+
|
| 235 |
+
What would you like to learn about today?"""
|
| 236 |
+
|
| 237 |
+
else:
|
| 238 |
+
return """I'm an AI assistant specialized in technology, programming, and artificial intelligence topics.
|
| 239 |
+
|
| 240 |
+
🎯 **I can help explain:**
|
| 241 |
+
• **Machine Learning & AI**: Concepts, algorithms, applications
|
| 242 |
+
• **Programming**: Python, data science, software development
|
| 243 |
+
• **Data Science**: Analytics, visualization, career guidance
|
| 244 |
+
• **Deep Learning**: Neural networks, computer vision, NLP
|
| 245 |
+
• **Technology Trends**: Latest developments in AI and tech
|
| 246 |
+
|
| 247 |
+
💡 **Try asking me:**
|
| 248 |
+
• "What is machine learning?"
|
| 249 |
+
• "How does artificial intelligence work?"
|
| 250 |
+
• "What is Python used for?"
|
| 251 |
+
• "Explain deep learning"
|
| 252 |
+
• "How to become a data scientist?"
|
| 253 |
+
|
| 254 |
+
🚀 **I provide detailed explanations with examples, practical applications, and learning guidance. What would you like to know about?**"""
|
| 255 |
|
| 256 |
@app.get("/", response_model=HealthResponse)
|
| 257 |
async def root():
|
|
|
|
| 280 |
start_time = datetime.now()
|
| 281 |
|
| 282 |
try:
|
| 283 |
+
# Generate intelligent response
|
| 284 |
+
response_text = get_ai_response(request.message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
# Calculate processing time
|
| 287 |
processing_time = (datetime.now() - start_time).total_seconds()
|
| 288 |
|
| 289 |
return ChatResponse(
|
| 290 |
response=response_text,
|
| 291 |
+
model_used="smart_ai_assistant_v2",
|
| 292 |
timestamp=datetime.now().isoformat(),
|
| 293 |
processing_time=processing_time
|
| 294 |
)
|
|
|
|
| 304 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
| 305 |
"""Get information about the loaded model"""
|
| 306 |
return {
|
| 307 |
+
"model_name": "smart_ai_assistant_v2",
|
| 308 |
"model_loaded": model_loaded,
|
| 309 |
+
"status": "active",
|
| 310 |
"capabilities": [
|
| 311 |
"Machine Learning explanations",
|
| 312 |
+
"Artificial Intelligence concepts",
|
| 313 |
+
"Programming guidance (Python)",
|
| 314 |
+
"Data Science career advice",
|
| 315 |
+
"Deep Learning tutorials",
|
| 316 |
+
"Technology trend analysis"
|
| 317 |
+
],
|
| 318 |
+
"version": "2.0.0"
|
| 319 |
}
|
| 320 |
|
| 321 |
if __name__ == "__main__":
|
| 322 |
+
# For Hugging Face Spaces
|
| 323 |
port = int(os.getenv("PORT", "7860"))
|
| 324 |
uvicorn.run(
|
| 325 |
+
"app_fixed:app",
|
| 326 |
host="0.0.0.0",
|
| 327 |
port=port,
|
| 328 |
reload=False
|