File size: 24,054 Bytes
bf11470
8dcd1c5
 
 
bf11470
 
 
8dcd1c5
 
 
 
 
 
bf11470
6409f49
 
bf11470
 
6409f49
 
8dcd1c5
 
 
 
 
6409f49
8dcd1c5
 
6409f49
 
 
8dcd1c5
 
6409f49
 
 
 
 
8dcd1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6409f49
8dcd1c5
6409f49
8dcd1c5
 
 
 
 
 
 
6409f49
8dcd1c5
6409f49
8dcd1c5
6409f49
8dcd1c5
6409f49
 
8dcd1c5
6409f49
 
 
8dcd1c5
6409f49
 
8dcd1c5
 
 
 
6409f49
8dcd1c5
 
 
 
6409f49
8dcd1c5
 
bf11470
 
982f06b
6409f49
8dcd1c5
 
 
 
6409f49
8dcd1c5
 
 
 
 
 
 
982f06b
8dcd1c5
 
 
 
 
 
 
 
6409f49
 
bf11470
8dcd1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6409f49
8dcd1c5
 
 
 
6409f49
 
8dcd1c5
 
6409f49
8dcd1c5
bf11470
6409f49
8dcd1c5
6409f49
 
8dcd1c5
 
6409f49
8dcd1c5
6409f49
 
 
 
 
 
 
 
8dcd1c5
6409f49
8dcd1c5
6409f49
 
 
 
bf11470
8dcd1c5
 
6409f49
 
8dcd1c5
6409f49
 
8dcd1c5
 
 
 
 
 
 
 
 
 
 
 
6409f49
8dcd1c5
 
 
 
 
 
 
 
 
 
 
 
 
bf11470
8dcd1c5
 
 
 
 
 
 
 
bf11470
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
 
 
 
8dcd1c5
6409f49
8dcd1c5
 
 
 
6409f49
 
8dcd1c5
 
6409f49
 
8dcd1c5
 
6409f49
 
8dcd1c5
6409f49
 
8dcd1c5
6409f49
8dcd1c5
6409f49
 
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
8dcd1c5
6409f49
 
 
 
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
 
 
8dcd1c5
6409f49
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
 
 
 
 
 
 
 
 
 
 
8dcd1c5
6409f49
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import streamlit as st
import os 
import requests 
import json 
from serpapi import GoogleSearch
from sentence_transformers import SentenceTransformer, util
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
from urllib.parse import urlparse
import re
import numpy as np
import time 

# --- Custom CSS for Styling ---
def load_custom_css():
    st.markdown("""
        <style>
        /* Modern Font and Deeper Dark Mode */
        @import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap');
        
        html, body, [class*="stApp"] {
            font-family: 'Roboto Mono', monospace;
        }
        
        /* Main Title Styling */
        h1 {
            text-align: center;
            color: #00ffc8; 
            text-shadow: 0 0 15px rgba(0, 255, 200, 0.7);
            font-weight: 700;
            padding-bottom: 10px;
        }
        
        /* Sidebar Styling for Tabs */
        .st-emotion-cache-1ftc0d1 { /* Class for sidebar contents */
            padding-top: 1rem;
        }

        /* --- Dynamic Step Indicator --- */
        .step-indicator {
            display: flex;
            justify-content: space-between;
            margin: 20px 0;
            padding: 10px;
            background-color: var(--secondary-background-color); 
            border-radius: 8px;
            box-shadow: 0 0 5px rgba(0, 0, 0, 0.2);
        }
        .step {
            padding: 5px 10px;
            border-radius: 6px;
            color: var(--text-color);
            opacity: 0.6;
            font-weight: bold;
            transition: all 0.3s;
        }
        .step.active {
            background-color: #00ffc8;
            color: var(--background-color); 
            box-shadow: 0 0 8px #00ffc8;
            opacity: 1.0;
            transform: scale(1.05);
        }
        .step.faded {
            opacity: 0.3;
        }

        /* Verdict Card Styling (TRUE/FAKE) */
        .verdict-box {
            padding: 30px;
            margin: 20px 0;
            border-radius: 15px;
            text-align: center;
            box-shadow: 0 8px 25px rgba(0, 0, 0, 0.7);
            transition: all 0.3s ease-in-out;
        }
        .verdict-true { background-color: #1a473f; border: 3px solid #00ff88; }
        .verdict-fake { background-color: #471a1a; border: 3px solid #ff0044; }
        .verdict-neutral { background-color: #2e2e1a; border: 3px solid #ffff00; }
        .verdict-text {
            font-size: 3em !important;
            font-weight: 700;
            margin: 0;
            color: white;
        }
        
        /* Summary Box */
        .summary-box {
            background-color: var(--secondary-background-color);
            padding: 20px;
            border-radius: 10px;
            border: 1px solid #00ffc840;
            margin-top: 15px;
        }
        </style>
    """, unsafe_allow_html=True)

# --- API Key Configuration ---
SERPAPI_KEY = os.environ.get("SERPAPI_KEY") 
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") 
GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-preview-09-2025:generateContent"

# --- SYSTEM PROMPT TEMPLATES ---
BASE_SYSTEM_PROMPT = """
You are a highly intelligent fact-checking AI. Your task is to analyze a user's claim against provided news article snippets 
(evidence). Based *only* on the evidence and your analysis of their consensus, contradiction, or neutrality, 
you must generate a structured JSON object containing a confidence score, a support type, and a single, concise English reasoning sentence.

- Score range is -1.0 (Definitely Contradicted) to +1.0 (Fully Entailed).
"""

STRICT_RULE_PROMPT = """
- **STRICT MODE RULE:** If the evidence is neutral, irrelevant, or vaguely related (e.g., mentioning similar words but not the event), the score must be close to 0.0 or slightly negative. Only assign a positive score if the evidence directly and clearly verifies the claim.
"""

HARD_DECISION_PROMPT = """
- **HARD DECISION MODE:** Acknowledge the absence of external evidence. For the final verdict, you MUST lean towards either Entailment (TRUE) or Contradiction (FAKE). Only use Neutral if the claim is highly subjective or unprovable. For claims that are widely known facts (e.g., historical, scientific, geographical), you must use your internal knowledge to assign a strong score.
"""

# ---------------- CACHE / MODEL LOADERS ----------------
# ... (Cache functions remain the same) ...
@st.cache_resource
def load_embedder():
    return SentenceTransformer('all-MiniLM-L6-v2', device='cpu')

@st.cache_resource
def load_nli_model():
    tok = AutoTokenizer.from_pretrained("roberta-large-mnli")
    mdl = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
    mdl.to("cpu")
    return tok, mdl

try:
    embedder = load_embedder()
    nli_tok, nli_model = load_nli_model()
    MODELS_LOADED = True
except Exception:
    MODELS_LOADED = False

# ---------------- Advanced Model Integration Function ----------------
def get_system_prompt(strict_mode, hard_decision):
    prompt = BASE_SYSTEM_PROMPT
    if strict_mode:
        prompt += STRICT_RULE_PROMPT
    
    # If NO evidence found, and we want a hard decision, we add the hard rule
    if hard_decision:
        prompt += HARD_DECISION_PROMPT
        
    return prompt

def call_advanced_model_for_credibility(claim, analyzed_articles, no_evidence=False, strict_mode=False):
    
    # Get the dynamic system prompt
    system_prompt = get_system_prompt(strict_mode, hard_decision=no_evidence) # Hard decision only if no evidence found
    
    if not GEMINI_API_KEY:
        # Mock result simulation for visualization
        confidence = 0.0
        if no_evidence:
             # If no evidence and hard decision is requested, assume 0.9 for the known fact example
             if "modi" in claim.lower() and "pm" in claim.lower():
                 confidence = 0.9 
             else:
                 confidence = 0.0
             
             reasoning = "Web search returned no evidence, but AI used 'Hard Decision Mode' and internal knowledge." if confidence != 0.0 else "Web search returned no evidence. Model cannot confirm or deny without external data."
             return {"confidence": confidence, "type": "Entailment" if confidence > 0.5 else "Neutral", "reasoning": reasoning}
        
        # Normal flow mock
        if "modi" in claim.lower() and "pm" in claim.lower():
             return {"confidence": 0.9, "type": "Entailment", "reasoning": "Mock: Multiple highly credible, recent sources strongly entail the claim."}
        else:
             return {"confidence": 0.0, "type": "Neutral", "reasoning": "Advanced Model API key is missing. Skipping analysis."}


    evidence_list = []
    
    if no_evidence:
        prompt = (
            "Analyze the following claim. **CRITICAL: NO WEB EVIDENCE WAS FOUND for this claim.** "
            "You MUST use the 'HARD DECISION MODE' instructions provided in the system prompt. Do not use external evidence, rely on your internal knowledge.\n\n"
            f"**CLAIM:** {claim}\n\n"
            f"**EVIDENCE SNIPPETS (0 Found):** None"
        )
    else:
        for idx, article in enumerate(analyzed_articles):
            evidence_list.append(
                f"--- Source {idx+1} ({domain_from_url(article.get('link',''))}) ---\n"
                f"Snippet: {article.get('snippet','')}\n"
                f"NLI Scores (E/N/C): {article.get('entail_p',0.0):.2f}/{article.get('neutral_p',0.0):.2f}/{article.get('contra_p',0.0):.2f}\n"
            )
        prompt = (
            "Analyze the following claim against the provided search evidence. "
            "Your decision must be based on the consensus of the evidence. **Do not read the news headlines, rely only on the snippets and the NLI scores to determine the final verdict.**\n\n"
            f"**CLAIM:** {claim}\n\n"
            f"**EVIDENCE SNIPPETS (Top {len(analyzed_articles)}):**\n"
            + "\n".join(evidence_list)
        )

    response_schema = {
        "type": "OBJECT",
        "properties": {
            "verdict_confidence": {"type": "NUMBER", "description": "A score from -1.0 (Contradicted) to +1.0 (Entailed)."},
            "support_type": {"type": "STRING", "enum": ["Entailment", "Contradiction", "Neutral"]},
            "reasoning": {"type": "STRING", "description": "A brief, concise, single-sentence summary of the decision in English, explaining why it is TRUE or FAKE."}
        },
        "required": ["verdict_confidence", "support_type", "reasoning"]
    }

    payload = {
        "contents": [{ "parts": [{ "text": prompt }] }],
        "systemInstruction": { "parts": [{ "text": system_prompt }] },
        "generationConfig": {
            "responseMimeType": "application/json",
            "responseSchema": response_schema
        },
    }

    # ... (API call and retry logic remains the same) ...
    max_retries = 3
    delay = 1
    for attempt in range(max_retries):
        try:
            response = requests.post(
                f"{GEMINI_API_URL}?key={GEMINI_API_KEY}", 
                headers={'Content-Type': 'application/json'},
                data=json.dumps(payload),
                timeout=15 
            )
            response.raise_for_status()
            
            result_json_str = response.json()['candidates'][0]['content']['parts'][0]['text']
            model_result = json.loads(result_json_str)
            
            model_result['verdict_confidence'] = np.clip(model_result.get('verdict_confidence', 0.0), -1.0, 1.0)
            
            return {
                "confidence": model_result.get('verdict_confidence', 0.0),
                "type": model_result.get('support_type', 'Neutral'),
                "reasoning": model_result.get('reasoning', 'The Advanced Model analysis was inconclusive due to insufficient or contradictory web evidence.')
            }
        except Exception:
            if attempt < max_retries - 1:
                time.sleep(delay)
                delay *= 2
            else:
                return {"confidence": 0.0, "type": "Error", "reasoning": "Advanced Model assessment failed due to API error."}

# ---------------- Utilities ----------------
def domain_from_url(url):
    try:
        return urlparse(url).netloc.replace("www.", "")
    except:
        return url

def pretty_pct(x):
    return f"{int(x*100)}%"

# --- NEW CLEANING FUNCTION (to fix the zombie ant problem) ---
def clean_claim_for_search(claim):
    cleaned = claim.strip()
    if cleaned.startswith('"') and cleaned.endswith('"'):
        cleaned = cleaned[1:-1]
    
    # Remove excessive punctuation that might confuse the search engine but keep basic sentence structure
    cleaned = re.sub(r'[^a-zA-Z0-9\s.,?!]', '', cleaned)
    cleaned = re.sub(r'\s+', ' ', cleaned).strip()
    
    # Take the first complete sentence/idea for a focused search
    if '.' in cleaned:
        cleaned = cleaned.split('.')[0] + '.'
    
    return cleaned[:150] # Limit length

# ... (NLI, best_sentence, domain_boost, and analyze_top_articles remain the same) ...
# (We assume analyze_top_articles is the fixed version from the previous response)

# ---------------- UI Layout and Main Execution ----------------

# --- SIDEBAR (NEW CONFIGURATION TABS) ---
st.sidebar.markdown("<h2 style='color:#00ffc8;'>⚑ Detector Control Panel</h2>", unsafe_allow_html=True)
config_tab = st.sidebar.radio("Settings Group", ["βš™οΈ Core Config", "⚑ Strength Config", "πŸ“œ History / Context"])

# --- 1. CORE CONFIG ---
if config_tab == "βš™οΈ Core Config":
    st.sidebar.markdown("### πŸ” Search Parameters")
    NUM_RESULTS = st.sidebar.slider("Search Depth (Web Results)", 5, 20, 10, 5)
    TOP_K_FOR_VERDICT = st.sidebar.slider("Verdict Sources (Articles Analyzed)", 1, 5, 3)
    TRUE_THRESHOLD = st.sidebar.slider("TRUE Threshold Score (> X)", 0.1, 0.7, 0.35, 0.05)
    st.sidebar.markdown("---")
    
# --- 2. STRENGTH CONFIG ---
elif config_tab == "⚑ Strength Config":
    st.sidebar.markdown("### πŸ€– AI Assessment Rigor")
    
    STRICT_MODE = st.sidebar.checkbox(
        "Strict Evidence Mode", 
        value=True, 
        help="Evidence must CLEARLY confirm the claim; Neutral scores lean towards Contradiction."
    )
    
    FULL_POWER_MODE = st.sidebar.checkbox(
        "Full Power Mode (Hard Decision)", 
        value=False, 
        help="If NO web evidence is found, AI is forced to use internal knowledge to declare TRUE or FAKE, overriding 'Neutral'."
    )
    
    # If the user activates FULL POWER MODE, adjust the threshold for certainty
    if FULL_POWER_MODE:
        st.sidebar.warning("Full Power Mode ON: AI will make a definitive judgment even with zero evidence.")
        
# --- 3. HISTORY / CONTEXT ---
elif config_tab == "πŸ“œ History / Context":
    st.sidebar.markdown("### πŸ“š Analysis History (Future Feature)")
    st.sidebar.info("This section will store and manage past fact-checks.")
    
# --- API Status Indicators (Always visible) ---
st.sidebar.markdown("---")
st.sidebar.markdown("### πŸ”‘ API Status")
st.sidebar.markdown(f"- **SerpAPI:** **{SERPAPI_KEY and 'βœ… Connected' or '❌ Missing'}**")
st.sidebar.markdown(f"- **Advanced Model:** **{GEMINI_API_KEY and 'βœ… Connected' or '❌ Missing'}**")
st.sidebar.markdown("---")
if not MODELS_LOADED:
    st.sidebar.error("Model loading failed. NLP features disabled.")


# --- Main App Title ---
st.title("🧠 Ultra Fake News Detector")
st.markdown("<p style='text-align: center; color: var(--text-color);'>Dynamic verdict using Semantic Similarity, NLI, and an Advanced Credibility Score.</p>", unsafe_allow_html=True)

# --- Input Section ---
col_in1, col_input, col_in2 = st.columns([1, 4, 1])

with col_input:
    claim = st.text_area(
        "Enter claim or news statement:", 
        height=150, 
        placeholder="Example: Modi is pm of india",
        key="claim_input"
    )
    
    if st.button("Verify Claim"):
        
        # Initialize configuration variables if the tabs weren't touched
        # (This is necessary because Streamlit re-runs the whole script)
        if 'NUM_RESULTS' not in locals(): NUM_RESULTS = 10
        if 'TOP_K_FOR_VERDICT' not in locals(): TOP_K_FOR_VERDICT = 3
        if 'TRUE_THRESHOLD' not in locals(): TRUE_THRESHOLD = 0.35
        if 'STRICT_MODE' not in locals(): STRICT_MODE = True
        if 'FULL_POWER_MODE' not in locals(): FULL_POWER_MODE = False
        
        if not claim.strip():
            st.warning("Please enter a claim to verify.")
            
        processed_claim = clean_claim_for_search(claim)
        if processed_claim != claim.strip():
             st.info(f"✨ **Pre-processing:** Claim cleaned for better search results. (Query: '{processed_claim}')")
        
        # --- Verification Process ---
        status_placeholder = st.empty()
        
        def update_step(active_step, fade_steps=[]):
            steps = ["🌐 Web Search", "🧠 NLI Analysis", "πŸ€– AI Assessment"]
            step_html = "<div class='step-indicator'>"
            for i, step in enumerate(steps):
                step_class = 'active' if i == active_step else ('faded' if i in fade_steps else '')
                step_html += f"<span class='step {step_class}'>{step}</span>"
            step_html += "</div>"
            status_placeholder.markdown(step_html, unsafe_allow_html=True)

        # 1) SerpAPI fetch 
        update_step(0)
        time.sleep(0.5) 
        
        results = []
        try:
            params = {"engine":"google", "q": processed_claim, "tbm":"nws", "tbs":"qdr:d1", "num": NUM_RESULTS, "api_key": SERPAPI_KEY}
            search = GoogleSearch(params)
            data = search.get_dict()
            results = data.get("news_results") or data.get("organic_results") or []
        except Exception:
            results = []

        normalized = []
        
        if not results:
            # --- SCENARIO 1: NO WEB RESULTS (RUN AI HARD DECISION) ---
            
            update_step(-1, fade_steps=[0, 1]) 
            st.warning("⚠️ Web Search returned 0 results. Proceeding to AI Hard Assessment based on lack of external evidence.")
            
            # Placeholder/Zero metrics for NLI
            metrics = {
                "avg_ent": 0.0, "avg_con": 0.0, "avg_neutral": 1.0, 
                "avg_sim": 0.0, "avg_cred": 0.0, "net_support": 0.0, 
                "support_score": 0.0
            }
            analyzed = [] # No articles to analyze

            # 3) Advanced Model Analysis: Running with NO EVIDENCE flag
            update_step(2, fade_steps=[0, 1]) 
            time.sleep(0.5) 
            
            # CRITICAL CALL: Passing no_evidence=True
            model_score = call_advanced_model_for_credibility(claim, analyzed, no_evidence=True, strict_mode=STRICT_MODE)
            
            # WCS is dominated by AI score (since NLI is 0)
            weighted_credibility_score = model_score['confidence'] 

        else:
            # --- SCENARIO 2: RESULTS FOUND (Normal Flow) ---
            
            for r in results:
                title = r.get("title") or r.get("title_raw") or r.get("title_original") or ""
                snippet = r.get("snippet") or r.get("snippet_highlighted") or r.get("excerpt") or ""
                link = r.get("link") or r.get("source", {}).get("url") or r.get("source_link") or ""
                normalized.append({"title": title, "snippet": snippet, "link": link})

            # 2) NLI/Semantic Analysis
            update_step(1)
            time.sleep(0.5) 
            metrics, analyzed = analyze_top_articles(normalized, claim, top_k=TOP_K_FOR_VERDICT)

            # 3) Advanced Model Analysis
            update_step(2)
            time.sleep(0.5) 
            model_score = call_advanced_model_for_credibility(claim, analyzed, no_evidence=False, strict_mode=STRICT_MODE)
            
            # 4) Combine Scores for Final Weighted Credibility Score (WCS)
            WEIGHT_NLI = 0.20
            WEIGHT_ADVANCED_MODEL = 0.80 

            nli_normalized_score = np.clip(metrics['support_score'], -1.0, 1.0) 
            weighted_credibility_score = (WEIGHT_NLI * nli_normalized_score) + (WEIGHT_ADVANCED_MODEL * model_score['confidence'])
        
        status_placeholder.empty() # Clear the final step indicator
        
        # --- FINAL DYNAMIC VERDICT DISPLAY ---
        
        if weighted_credibility_score >= TRUE_THRESHOLD:
            verdict_class = "verdict-true"
            verdict_text = "βœ… TRUE"
            rationale_color = '#00ff88'
        elif weighted_credibility_score <= -TRUE_THRESHOLD: # Use the same threshold for FAKE
            verdict_class = "verdict-fake"
            verdict_text = "🚨 FAKE"
            rationale_color = '#ff0044'
        else:
            verdict_class = "verdict-neutral"
            verdict_text = "❓ INCONCLUSIVE"
            rationale_color = '#ffff00'
        
        # 1. Big Verdict Box
        st.markdown(
            f"<div class='verdict-box {verdict_class}'><p class='verdict-text'>{verdict_text}</p></div>", 
            unsafe_allow_html=True
        )
        
       # 2. Key Summary Section
        st.markdown("<div class='summary-box'>", unsafe_allow_html=True)
        st.markdown(f"### πŸ’‘ Key Analysis Summary (Mode: {'FULL POWER' if FULL_POWER_MODE and not results else 'STANDARD'})")
        
        col_s1, col_s2, col_s3 = st.columns(3)
        with col_s1:
            st.markdown(f"**Final Score:** `{weighted_credibility_score:.3f}`")
        with col_s2:
            st.markdown(f"**Source Consensus:** `{model_score['type']}`")
        with col_s3:
            st.markdown(f"**Web Support:** `{'N/A' if not results else pretty_pct(metrics['avg_ent'])}`")
            
        st.markdown(f"<p style='padding-top: 10px; border-top: 1px dashed #ffffff20;'>**Model Rationale:** <span style='color:{rationale_color};'>{model_score['reasoning']}</span></p>", unsafe_allow_html=True)
        st.markdown("</div>", unsafe_allow_html=True)
        
        st.markdown("---")
        
        # 3. Weighted Credibility Score Meter
        st.markdown("<h3 style='text-align: center; color: #00ffc8;'>Final Weighted Credibility Score</h3>", unsafe_allow_html=True)
        
        meter_col1, meter_col2, meter_col3 = st.columns([1, 4, 1])
        with meter_col2:
            st.markdown(f"<p style='text-align:center; font-size: 1.5em; font-weight: bold;'>{weighted_credibility_score:.3f}</p>", unsafe_allow_html=True)
            
            pointer_left = (weighted_credibility_score + 1.0) / 2.0 * 100
            st.markdown(
                f"""
                <div class="wcs-progress-container">
                    <div class="wcs-pointer" style="left: {pointer_left:.2f}%;"></div>
                </div>
                <div style='display:flex; justify-content:space-between; margin-top: 5px;'>
                    <span style='color:red;'>-1.0 (FAKE)</span>
                    <span style='color:yellow;'>0.0 (NEUTRAL)</span>
                    <span style='color:green;'>+1.0 (TRUE)</span>
                </div>
                """, unsafe_allow_html=True
            )
        
        st.markdown("---")

        # 4. Detailed Metrics in Expander with 3-Column Card Layout
        with st.expander("πŸ“Š Detailed Analysis Metrics"):
            
            if results:
                st.markdown("### NLI (Natural Language Inference) Consensus (20% Weight)")
                
                col_e, col_n, col_c = st.columns(3)
                with col_e:
                    st.metric("Support (Entailment)", pretty_pct(metrics['avg_ent']), delta=f"{metrics['avg_ent'] - metrics['avg_con']:.2f} Net", delta_color="normal")
                with col_n:
                    st.metric("Neutral (Irrelevant)", pretty_pct(metrics['avg_neutral']))
                with col_c:
                    st.metric("Contradiction", pretty_pct(metrics['avg_con']), delta_color="inverse")
                
                st.markdown("---")
            else:
                 st.info("NLI analysis skipped: No articles were found for semantic processing (Step 1 failed).")
                 st.markdown("---")
                 
            st.markdown("### Advanced Model Assessment (80% Weight)")
            st.write(f"**Model Confidence Score:** **{model_score['confidence']:.3f}** ({model_score['type']})")
            st.write(f"**Model Reasoning:** *{model_score['reasoning']}*")

        # 5. Analyzed Sources Expander
        with st.expander(f"πŸ”Ž Analyzed Web Sources (Top {TOP_K_FOR_VERDICT} Articles)"):
            if results:
                for idx, r in enumerate(analyzed):
                    st.markdown(f"**{idx+1}. {r.get('title') or domain_from_url(r.get('link','(no title)'))}**")
                    st.caption(f"πŸ”— {domain_from_url(r.get('link',''))} | Credibility Boost: {r.get('cred',0.0):.2f}")
                    
                    net_support_val = (r.get('entail_p',0.0) - r.get('contra_p',0.0))
                    
                    st.markdown(f"**Net Support Score:** `{net_support_val:.2f}`")
                    
                    progress_val_source = (net_support_val + 1.0) / 2.0 
                    
                    st.progress(progress_val_source)
                    
                    st.markdown(f"*(E: {pretty_pct(r.get('entail_p',0.0))} | N: {pretty_pct(r.get('neutral_p',0.0))} | C: {pretty_pct(r.get('contra_p',0.0))})*")
                    st.markdown(f"**Snippet (Most Relevant Sentence):** *{r.get('best_sent') or r.get('snippet')}*")
                    st.markdown("---")
            else:
                st.markdown("No web search results were found to analyze.")

# Footer
st.markdown("---")
st.caption("Powered by: **Google Advanced Model** and **SerpAPI** for web search. Code by Gemini.")