Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from serpapi import GoogleSearch
|
| 4 |
+
from sentence_transformers import SentenceTransformer, util
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from urllib.parse import urlparse
|
| 9 |
+
from bs4 import BeautifulSoup
|
| 10 |
+
import requests
|
| 11 |
+
import re
|
| 12 |
+
import numpy as np
|
| 13 |
+
import textwrap
|
| 14 |
+
|
| 15 |
+
# ---------------- Settings ----------------
|
| 16 |
+
st.set_page_config(page_title="Super Smart Fake News Detector β Advanced", page_icon="π§ ", layout="centered")
|
| 17 |
+
st.title("π§ Super Smart Fake News Detector β Advanced")
|
| 18 |
+
st.write("Dynamic verdict (TRUE / FAKE / INSUFFICIENT DATA) using Semantic Similarity, NLI (Entailment/Contradiction), and Credibility weighting.")
|
| 19 |
+
|
| 20 |
+
# --- FULL POWER CONSTANTS ---
|
| 21 |
+
NUM_RESULTS = 30 # Maximum number of search results to fetch
|
| 22 |
+
TOP_K_FOR_VERDICT = 6 # Maximum number of top results to analyze
|
| 23 |
+
# ----------------------------
|
| 24 |
+
|
| 25 |
+
# ---------------- Caches / Model loaders ----------------
|
| 26 |
+
@st.cache_resource
|
| 27 |
+
def load_embedder():
|
| 28 |
+
# Force CPU to avoid device issues on Cloud
|
| 29 |
+
return SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
|
| 30 |
+
|
| 31 |
+
@st.cache_resource
|
| 32 |
+
def load_nli_model():
|
| 33 |
+
# NLI model (roberta-large-mnli) - CPU mode
|
| 34 |
+
tok = AutoTokenizer.from_pretrained("roberta-large-mnli")
|
| 35 |
+
mdl = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
|
| 36 |
+
mdl.to("cpu")
|
| 37 |
+
return tok, mdl
|
| 38 |
+
|
| 39 |
+
embedder = load_embedder()
|
| 40 |
+
nli_tok, nli_model = load_nli_model()
|
| 41 |
+
|
| 42 |
+
# ---------------- Utilities ----------------
|
| 43 |
+
def domain_from_url(url):
|
| 44 |
+
try:
|
| 45 |
+
return urlparse(url).netloc.replace("www.", "")
|
| 46 |
+
except:
|
| 47 |
+
return url
|
| 48 |
+
|
| 49 |
+
def pretty_pct(x):
|
| 50 |
+
return f"{int(x*100)}%"
|
| 51 |
+
|
| 52 |
+
# ---------------- Rank-claim helpers (Wikipedia list check) ----------------
|
| 53 |
+
ORDINAL_WORDS = {
|
| 54 |
+
"first":1, "second":2, "third":3, "fourth":4, "fifth":5, "sixth":6, "seventh":7, "eighth":8, "ninth":9, "tenth":10,
|
| 55 |
+
"eleventh":11, "twelfth":12, "thirteenth":13, "fourteenth":14, "fifteenth":15, "sixteenth":16, "seventeenth":17,
|
| 56 |
+
"eighteenth":18, "nineteenth":19, "twentieth":20
|
| 57 |
+
}
|
| 58 |
+
ROLE_KEYWORDS = ["prime minister", "prime-minister", "pm", "president", "chief minister", "cm", "governor", "chief justice"]
|
| 59 |
+
|
| 60 |
+
def find_ordinal_and_role(text):
|
| 61 |
+
t = text.lower()
|
| 62 |
+
num = None
|
| 63 |
+
m = re.search(r'\b(\d{1,2})(?:st|nd|rd|th)?\b', t)
|
| 64 |
+
if m:
|
| 65 |
+
num = int(m.group(1))
|
| 66 |
+
else:
|
| 67 |
+
for w, n in ORDINAL_WORDS.items():
|
| 68 |
+
if re.search(r'\b' + re.escape(w) + r'\b', t):
|
| 69 |
+
num = n
|
| 70 |
+
break
|
| 71 |
+
role = None
|
| 72 |
+
for rk in ROLE_KEYWORDS:
|
| 73 |
+
if rk in t:
|
| 74 |
+
role = rk.replace('-', ' ')
|
| 75 |
+
break
|
| 76 |
+
return num, role
|
| 77 |
+
|
| 78 |
+
def extract_person_candidate(text):
|
| 79 |
+
patterns = [
|
| 80 |
+
r"^([\w\s\.\-]{2,80}?)\s+is\s+the\b",
|
| 81 |
+
r"^([\w\s\.\-]{2,80}?)\s+is\s+(\d{1,2})",
|
| 82 |
+
r"is\s+([\w\s\.\-]{2,80}?)\s+the\s+\d{1,2}",
|
| 83 |
+
r"^([\w\s\.\-]{2,80}?)\s+was\s+the\b",
|
| 84 |
+
]
|
| 85 |
+
for p in patterns:
|
| 86 |
+
mm = re.search(p, text, flags=re.IGNORECASE)
|
| 87 |
+
if mm:
|
| 88 |
+
name = mm.group(1).strip()
|
| 89 |
+
if len(name) > 1 and not re.match(r'^(it|he|she|they|this|that)$', name.lower()):
|
| 90 |
+
return name
|
| 91 |
+
tokens = re.findall(r'[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*', text)
|
| 92 |
+
if tokens:
|
| 93 |
+
return tokens[0]
|
| 94 |
+
return text.split()[0]
|
| 95 |
+
|
| 96 |
+
def normalize_name(s):
|
| 97 |
+
return re.sub(r'[^a-z]', '', s.lower())
|
| 98 |
+
|
| 99 |
+
def find_wikipedia_list_page(role, country, serp_api_key):
|
| 100 |
+
query = f'List of {role} of {country} site:en.wikipedia.org'
|
| 101 |
+
try:
|
| 102 |
+
params = {"engine":"google", "q": query, "api_key": st.secrets["SERPAPI_KEY"], "num": 1}
|
| 103 |
+
search = GoogleSearch(params)
|
| 104 |
+
res = search.get_dict()
|
| 105 |
+
organic = res.get("organic_results") or []
|
| 106 |
+
if organic:
|
| 107 |
+
return organic[0].get("link")
|
| 108 |
+
except Exception:
|
| 109 |
+
pass
|
| 110 |
+
cand = f"https://en.wikipedia.org/wiki/List_of_{role.replace(' ','_')}_of_{country.replace(' ','_')}"
|
| 111 |
+
return cand
|
| 112 |
+
|
| 113 |
+
def parse_wikipedia_list(url):
|
| 114 |
+
try:
|
| 115 |
+
r = requests.get(url, timeout=8, headers={"User-Agent":"Mozilla/5.0"})
|
| 116 |
+
if r.status_code != 200:
|
| 117 |
+
return []
|
| 118 |
+
soup = BeautifulSoup(r.text, 'html.parser')
|
| 119 |
+
names = []
|
| 120 |
+
tables = soup.find_all("table", {"class": ["wikitable", "sortable"]})
|
| 121 |
+
for table in tables:
|
| 122 |
+
for tr in table.find_all("tr"):
|
| 123 |
+
tds = tr.find_all(["td", "th"])
|
| 124 |
+
if not tds:
|
| 125 |
+
continue
|
| 126 |
+
textcells = [td.get_text(separator=" ").strip() for td in tds if td.get_text(strip=True)]
|
| 127 |
+
for cell in textcells[:2]:
|
| 128 |
+
if re.search(r'\b(19|20)\d{2}\b', cell) and len(cell) < 30:
|
| 129 |
+
continue
|
| 130 |
+
if len(cell) > 1 and re.search(r'[A-Za-z]', cell):
|
| 131 |
+
cleaned = re.sub(r'\[.*?\]|\(.*?\)', '', cell).strip()
|
| 132 |
+
cand = re.split(r'\n|,|;|-', cleaned)[0].strip()
|
| 133 |
+
if len(cand) > 1 and not re.search(r'\b(year|term|born)\b', cand, re.I):
|
| 134 |
+
names.append(cand)
|
| 135 |
+
break
|
| 136 |
+
if not names:
|
| 137 |
+
for li in soup.find_all('li'):
|
| 138 |
+
text = li.get_text().strip()
|
| 139 |
+
if len(text) > 3 and re.search(r'\b[A-Z][a-z]+', text):
|
| 140 |
+
if re.search(r'\b(19|20)\d{2}\b', text) or re.search(r'\bPrime Minister\b', text, re.I):
|
| 141 |
+
cleaned = re.sub(r'\[.*?\]|\(.*?\)', '', text).strip()
|
| 142 |
+
names.append(cleaned.split('β')[0].split('-')[0].strip())
|
| 143 |
+
normalized = []
|
| 144 |
+
for n in names:
|
| 145 |
+
nn = re.sub(r'\s+', ' ', n).strip()
|
| 146 |
+
if nn and nn not in normalized:
|
| 147 |
+
normalized.append(nn)
|
| 148 |
+
return normalized
|
| 149 |
+
except Exception:
|
| 150 |
+
return []
|
| 151 |
+
|
| 152 |
+
def match_person_in_list(person_candidate, names_list):
|
| 153 |
+
pc = normalize_name(person_candidate)
|
| 154 |
+
for idx, full in enumerate(names_list):
|
| 155 |
+
if not full:
|
| 156 |
+
continue
|
| 157 |
+
fn = normalize_name(full)
|
| 158 |
+
if pc and (pc in fn or fn in pc):
|
| 159 |
+
return idx+1, full
|
| 160 |
+
tokens = person_candidate.lower().split()
|
| 161 |
+
for idx, full in enumerate(names_list):
|
| 162 |
+
fn = full.lower()
|
| 163 |
+
if all(any(tok in part for part in fn.split()) for tok in tokens if len(tok)>2):
|
| 164 |
+
return idx+1, full
|
| 165 |
+
return None, None
|
| 166 |
+
|
| 167 |
+
def check_rank_claim_wikipedia(person, ordinal, role, country, serp_api_key):
|
| 168 |
+
wiki_url = find_wikipedia_list_page(role, country, serp_api_key)
|
| 169 |
+
names = parse_wikipedia_list(wiki_url)
|
| 170 |
+
if not names:
|
| 171 |
+
return {"decisive": False, "reason": "Could not retrieve list page or parse it.", "wiki_url": wiki_url}
|
| 172 |
+
rank, matched_name = match_person_in_list(person, names)
|
| 173 |
+
if rank is None:
|
| 174 |
+
return {"decisive": False, "reason": "Person not found in list parsed from " + wiki_url, "wiki_url": wiki_url, "names_sample": names[:6]}
|
| 175 |
+
else:
|
| 176 |
+
if rank == ordinal:
|
| 177 |
+
return {"decisive": True, "result": True, "rank": rank, "matched_name": matched_name, "wiki_url": wiki_url}
|
| 178 |
+
else:
|
| 179 |
+
return {"decisive": True, "result": False, "rank": rank, "matched_name": matched_name, "wiki_url": wiki_url}
|
| 180 |
+
|
| 181 |
+
# ---------------- NLI & sentence helpers ----------------
|
| 182 |
+
def nli_entailment_prob(premise, hypothesis):
|
| 183 |
+
inputs = nli_tok.encode_plus(premise, hypothesis, return_tensors="pt", truncation=True, max_length=512)
|
| 184 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 185 |
+
with torch.no_grad():
|
| 186 |
+
logits = nli_model(**inputs).logits
|
| 187 |
+
probs = F.softmax(logits, dim=1)[0]
|
| 188 |
+
# NLI labels for roberta-large-mnli are: 0=entailment, 1=neutral, 2=contradiction
|
| 189 |
+
return probs[0].item(), probs[1].item(), probs[2].item() # Entailment, Neutral, Contradiction
|
| 190 |
+
|
| 191 |
+
def best_sentence_for_claim(snippet, claim):
|
| 192 |
+
import re
|
| 193 |
+
sents = re.split(r'(?<=[.!?])\s+', snippet) if snippet else []
|
| 194 |
+
if not sents:
|
| 195 |
+
return snippet or "", 0.0
|
| 196 |
+
sent_embs = embedder.encode(sents, convert_to_tensor=True)
|
| 197 |
+
claim_emb = embedder.encode(claim, convert_to_tensor=True)
|
| 198 |
+
sims = util.cos_sim(claim_emb, sent_embs)[0].cpu().numpy()
|
| 199 |
+
best_idx = int(sims.argmax())
|
| 200 |
+
return sents[best_idx], float(sims[best_idx])
|
| 201 |
+
|
| 202 |
+
def domain_boost(domain):
|
| 203 |
+
trusted = ["bbc", "reuters", "theguardian", "nytimes", "indiatimes", "ndtv", "timesofindia", "cnn", "espn", "espncricinfo", "aljazeera"]
|
| 204 |
+
return 0.2 if any(t in domain for t in trusted) else 0.0
|
| 205 |
+
|
| 206 |
+
def analyze_top_articles(normalized, claim, top_k):
|
| 207 |
+
sims, entails, neutral, contradicts, creds = [], [], [], [], []
|
| 208 |
+
for r in normalized[:top_k]:
|
| 209 |
+
text = (r.get("title","") + ". " + (r.get("snippet") or ""))
|
| 210 |
+
best_sent, best_sim = best_sentence_for_claim(r.get("snippet",""), claim)
|
| 211 |
+
# fallback semantic sim using whole text if best_sim==0
|
| 212 |
+
sem_sim = best_sim if best_sim>0 else float(util.cos_sim(
|
| 213 |
+
embedder.encode(claim, convert_to_tensor=True),
|
| 214 |
+
embedder.encode(text, convert_to_tensor=True)
|
| 215 |
+
)[0].item())
|
| 216 |
+
|
| 217 |
+
try:
|
| 218 |
+
entail_p, neutral_p, contra_p = nli_entailment_prob(best_sent or text, claim)
|
| 219 |
+
except Exception:
|
| 220 |
+
entail_p, neutral_p, contra_p = 0.0, 0.0, 0.0
|
| 221 |
+
|
| 222 |
+
# --- NLI Smart Filter (Fixes high contradiction on high sim matches) ---
|
| 223 |
+
if sem_sim > 0.80 and contra_p > 0.80 and entail_p < 0.10:
|
| 224 |
+
# Assume this is the correct news headline reporting the claim, not contradicting it.
|
| 225 |
+
entail_p = 0.80
|
| 226 |
+
contra_p = 0.05
|
| 227 |
+
# ----------------------------------------------------------------------
|
| 228 |
+
|
| 229 |
+
domain = urlparse(r.get("link","")).netloc
|
| 230 |
+
cred = domain_boost(domain)
|
| 231 |
+
|
| 232 |
+
sims.append(sem_sim)
|
| 233 |
+
entails.append(entail_p)
|
| 234 |
+
neutral.append(neutral_p)
|
| 235 |
+
contradicts.append(contra_p)
|
| 236 |
+
creds.append(cred)
|
| 237 |
+
|
| 238 |
+
r["entail_p"] = entail_p
|
| 239 |
+
r["neutral_p"] = neutral_p
|
| 240 |
+
r["contra_p"] = contra_p
|
| 241 |
+
r["sem_sim"] = sem_sim
|
| 242 |
+
r["cred"] = cred
|
| 243 |
+
r["best_sent"] = best_sent
|
| 244 |
+
|
| 245 |
+
avg_sim = float(np.mean(sims)) if sims else 0.0
|
| 246 |
+
avg_ent = float(np.mean(entails)) if entails else 0.0
|
| 247 |
+
avg_neu = float(np.mean(neutral)) if neutral else 0.0
|
| 248 |
+
avg_con = float(np.mean(contradicts)) if contradicts else 0.0
|
| 249 |
+
avg_cred = float(np.mean(creds)) if creds else 0.0
|
| 250 |
+
|
| 251 |
+
# Calculate net support as (Entailment - Contradiction)
|
| 252 |
+
net_support = avg_ent - avg_con
|
| 253 |
+
|
| 254 |
+
# DYNAMIC SCORING LOGIC
|
| 255 |
+
# SCORE 1: Support Score (Prioritizes credible logical support)
|
| 256 |
+
# This is the primary decision factor: Net Support * (1 + Credibility)
|
| 257 |
+
support_score = net_support * (1 + avg_cred)
|
| 258 |
+
|
| 259 |
+
# SCORE 2: Final Score (Used for general ranking/transparency)
|
| 260 |
+
final_score = 0.50 * net_support + 0.30 * avg_sim + 0.20 * avg_cred
|
| 261 |
+
|
| 262 |
+
metrics = {
|
| 263 |
+
"avg_ent": avg_ent,
|
| 264 |
+
"avg_neu": avg_neu,
|
| 265 |
+
"avg_con": avg_con,
|
| 266 |
+
"avg_sim": avg_sim,
|
| 267 |
+
"avg_cred": avg_cred,
|
| 268 |
+
"net_support": net_support,
|
| 269 |
+
"support_score": support_score
|
| 270 |
+
}
|
| 271 |
+
return final_score, metrics, normalized[:top_k]
|
| 272 |
+
|
| 273 |
+
# ---------------- Main UI inputs ----------------
|
| 274 |
+
claim = st.text_area("Enter claim or news sentence:", height=140, placeholder="e.g. India defeats Pakistan in Asia Cup 2025")
|
| 275 |
+
|
| 276 |
+
st.info(f"Using **{NUM_RESULTS}** recent news results (Last 24hrs) and analyzing top **{TOP_K_FOR_VERDICT}** matches (Full Power Mode).")
|
| 277 |
+
|
| 278 |
+
if st.button("Verify Claim"):
|
| 279 |
+
if not claim.strip():
|
| 280 |
+
st.warning("Please enter a claim.")
|
| 281 |
+
else:
|
| 282 |
+
with st.spinner("Analysing... (this may take a few seconds)"):
|
| 283 |
+
|
| 284 |
+
# 1) Rank-claim check (Wikipedia) if applicable
|
| 285 |
+
ordinal, role = find_ordinal_and_role(claim)
|
| 286 |
+
person_candidate = None
|
| 287 |
+
country = "India" if "india" in claim.lower() else ""
|
| 288 |
+
if ordinal and role:
|
| 289 |
+
person_candidate = extract_person_candidate(claim)
|
| 290 |
+
m_country = re.search(r'\bof\s+([A-Za-z\s]+)', claim, flags=re.IGNORECASE)
|
| 291 |
+
if m_country:
|
| 292 |
+
country = m_country.group(1).strip()
|
| 293 |
+
rank_check = check_rank_claim_wikipedia(person_candidate, ordinal, role, country or "India", st.secrets["SERPAPI_KEY"])
|
| 294 |
+
if rank_check.get("decisive"):
|
| 295 |
+
if rank_check.get("result"):
|
| 296 |
+
st.markdown("<h2 style='color:green;text-align:center'>β
TRUE</h2>", unsafe_allow_html=True)
|
| 297 |
+
st.write(f"Reason: Authoritative list ({rank_check.get('wiki_url')}) shows **{rank_check.get('matched_name')}** as the {ordinal}th {role} of {country or 'the country'}.")
|
| 298 |
+
else:
|
| 299 |
+
st.markdown("<h2 style='color:red;text-align:center'>π¨ FAKE</h2>", unsafe_allow_html=True)
|
| 300 |
+
st.write(f"Reason: Authoritative list ({rank_check.get('wiki_url')}) shows **{rank_check.get('matched_name')}** as the {rank_check.get('rank')}th {role}, not the {ordinal}th.")
|
| 301 |
+
st.write("Source (for verification):", rank_check.get("wiki_url"))
|
| 302 |
+
st.stop() # done
|
| 303 |
+
|
| 304 |
+
# 2) SerpAPI fetch (Filtering results to last 24hrs using tbs=qdr:d1)
|
| 305 |
+
try:
|
| 306 |
+
# Using tbs=qdr:d1 to filter results to the last 24 hours for better relevance
|
| 307 |
+
params = {"engine":"google", "q": claim, "tbm":"nws", "tbs":"qdr:d1", "num": NUM_RESULTS, "api_key": st.secrets["SERPAPI_KEY"]}
|
| 308 |
+
search = GoogleSearch(params)
|
| 309 |
+
data = search.get_dict()
|
| 310 |
+
results = data.get("news_results") or data.get("organic_results") or []
|
| 311 |
+
except Exception as e:
|
| 312 |
+
st.error("Search failed: " + str(e))
|
| 313 |
+
results = []
|
| 314 |
+
|
| 315 |
+
if not results:
|
| 316 |
+
st.markdown("<h2 style='color:red;text-align:center'>π¨ FAKE</h2>", unsafe_allow_html=True)
|
| 317 |
+
st.write("Reason: No relevant **recent** news results returned by the live search API. The claim is unconfirmed or outdated.")
|
| 318 |
+
else:
|
| 319 |
+
normalized = []
|
| 320 |
+
for r in results:
|
| 321 |
+
title = r.get("title") or r.get("title_raw") or r.get("title_original") or ""
|
| 322 |
+
snippet = r.get("snippet") or r.get("snippet_highlighted") or r.get("excerpt") or ""
|
| 323 |
+
link = r.get("link") or r.get("source", {}).get("url") or r.get("source_link") or ""
|
| 324 |
+
normalized.append({"title": title, "snippet": snippet, "link": link})
|
| 325 |
+
|
| 326 |
+
# compute decision via new intelligence module
|
| 327 |
+
final_score, metrics, analyzed = analyze_top_articles(normalized, claim, top_k=TOP_K_FOR_VERDICT)
|
| 328 |
+
|
| 329 |
+
# DYNAMIC VERDICT LOGIC: (TRUE / FAKE / INSUFFICIENT DATA)
|
| 330 |
+
|
| 331 |
+
# Condition for TRUE: High credibility-weighted support AND good relevance.
|
| 332 |
+
if metrics["support_score"] >= 0.15 and metrics["avg_sim"] >= 0.50:
|
| 333 |
+
st.markdown("<h2 style='color:green;text-align:center'>β
TRUE</h2>", unsafe_allow_html=True)
|
| 334 |
+
st.write("Reason: **Strong logical support from credible sources** found, confirming the claim's relevance.")
|
| 335 |
+
verdict_msg = "TRUE"
|
| 336 |
+
|
| 337 |
+
# Condition for INSUFFICIENT DATA: Not enough support (low support_score) and low relevance, but high neutrality (no strong contradiction found).
|
| 338 |
+
elif metrics["avg_sim"] < 0.50 and metrics["avg_neu"] > 0.60:
|
| 339 |
+
st.markdown("<h2 style='color:orange;text-align:center'>β οΈ INSUFFICIENT DATA</h2>", unsafe_allow_html=True)
|
| 340 |
+
st.write("Reason: Low semantic relevance and high neutral logical probability across sources. The claim is either too vague, futuristic, or lacks sufficient recent confirmation.")
|
| 341 |
+
verdict_msg = "INSUFFICIENT DATA"
|
| 342 |
+
|
| 343 |
+
# Default to FAKE: Insufficient support or strong contradiction present.
|
| 344 |
+
else:
|
| 345 |
+
st.markdown("<h2 style='color:red;text-align:center'>π¨ FAKE</h2>", unsafe_allow_html=True)
|
| 346 |
+
st.write("Reason: Insufficient combined credibility and logical support, or strong refutation present. The claim is likely refuted, outdated, or lacks reliable confirmation.")
|
| 347 |
+
verdict_msg = "FAKE"
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
st.write(f"Details β Support Score (Credibility Weighted): {metrics['support_score']:.2f}, avg semantic sim: {metrics['avg_sim']:.2f}, net support (E-C): {metrics['net_support']:.2f}")
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
# show short synthesized reason
|
| 354 |
+
if verdict_msg == "TRUE":
|
| 355 |
+
ex = []
|
| 356 |
+
for r in analyzed[:3]:
|
| 357 |
+
if r.get("sem_sim", 0.0) > 0.4 and r.get("entail_p", 0.0) > r.get("contra_p", 0.0):
|
| 358 |
+
ex.append(textwrap.shorten(r.get("best_sent") or r.get("snippet",""), width=160, placeholder="..."))
|
| 359 |
+
if ex:
|
| 360 |
+
st.info("Example supporting excerpts: " + " | ".join(ex))
|
| 361 |
+
elif verdict_msg == "FAKE":
|
| 362 |
+
best = analyzed[0] if analyzed else None
|
| 363 |
+
if best and best.get("best_sent"):
|
| 364 |
+
st.info("Closest (but weak) excerpt: " + textwrap.shorten(best.get("best_sent") or best.get("snippet",""), width=220, placeholder="..."))
|
| 365 |
+
|
| 366 |
+
# transparency
|
| 367 |
+
with st.expander("Show analyzed top sources and scores"):
|
| 368 |
+
for idx, r in enumerate(analyzed):
|
| 369 |
+
st.markdown(f"**{idx+1}. {r.get('title') or r.get('link','(no title)')}**")
|
| 370 |
+
st.write(f"- Domain: {domain_from_url(r.get('link',''))}")
|
| 371 |
+
st.write(f"- Semantic similarity (sentence-level): {pretty_pct(r.get('sem_sim',0.0))}")
|
| 372 |
+
st.write(f"- **Net Support (Entail-Contra)**: {r.get('entail_p',0.0) - r.get('contra_p',0.0):.2f}")
|
| 373 |
+
st.write(f" (E: {pretty_pct(r.get('entail_p',0.0))} | N: {pretty_pct(r.get('neutral_p',0.0))} | C: {pretty_pct(r.get('contra_p',0.0))})")
|
| 374 |
+
st.write(f"- Credibility boost: {r.get('cred',0.0):.2f}")
|
| 375 |
+
st.write(f"- Link: {r.get('link')}")
|
| 376 |
+
st.markdown("---")
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
# Footer
|
| 380 |
+
st.markdown("---")
|
| 381 |
+
st.caption("Project: NLP-driven Fact-Checking System. Use responsibly.")
|