Commit
·
3eaabcf
1
Parent(s):
9293eee
Deploy backend code
Browse files- .gitignore +2 -0
- DOCKERFILE +15 -0
- build_index.py +80 -0
- main.py +149 -0
- requirements.txt +6 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
products.json
|
| 2 |
+
products.index
|
DOCKERFILE
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
RUN apt-get update && apt-get install -y git wget curl build-essential
|
| 4 |
+
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
COPY requirements.txt .
|
| 8 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 9 |
+
|
| 10 |
+
COPY . .
|
| 11 |
+
|
| 12 |
+
EXPOSE 7860
|
| 13 |
+
|
| 14 |
+
# Build index if missing, then run FastAPI
|
| 15 |
+
CMD ["bash", "-c", "python build_index.py && uvicorn main:app --host 0.0.0.0 --port 7860"]
|
build_index.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import requests
|
| 4 |
+
import io
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
| 9 |
+
from tqdm import tqdm # progress bar
|
| 10 |
+
|
| 11 |
+
# ---------------------------------------------------
|
| 12 |
+
# Locate products.json in the same folder as this script
|
| 13 |
+
# ---------------------------------------------------
|
| 14 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 15 |
+
PRODUCTS_FILE = os.path.join(BASE_DIR, "products.json")
|
| 16 |
+
INDEX_FILE = os.path.join(BASE_DIR, "products.index")
|
| 17 |
+
|
| 18 |
+
# ---------------------------------------------------
|
| 19 |
+
# Load product metadata
|
| 20 |
+
# ---------------------------------------------------
|
| 21 |
+
if not os.path.exists(PRODUCTS_FILE):
|
| 22 |
+
raise FileNotFoundError(f"❌ Could not find {PRODUCTS_FILE}")
|
| 23 |
+
|
| 24 |
+
with open(PRODUCTS_FILE, "r", encoding="utf-8") as f:
|
| 25 |
+
products = json.load(f)
|
| 26 |
+
|
| 27 |
+
print(f"📦 Loaded {len(products)} products from {PRODUCTS_FILE}")
|
| 28 |
+
|
| 29 |
+
# ---------------------------------------------------
|
| 30 |
+
# Load CLIP model
|
| 31 |
+
# ---------------------------------------------------
|
| 32 |
+
print("🧠 Loading CLIP model (this may take a few seconds)...")
|
| 33 |
+
model = SentenceTransformer("clip-ViT-B-32")
|
| 34 |
+
|
| 35 |
+
# ---------------------------------------------------
|
| 36 |
+
# Collect unique image URLs (avoid redundant downloads)
|
| 37 |
+
# ---------------------------------------------------
|
| 38 |
+
unique_urls = list({p["image_url"] for p in products})
|
| 39 |
+
print(f"🔗 Found {len(unique_urls)} unique image URLs")
|
| 40 |
+
|
| 41 |
+
# ---------------------------------------------------
|
| 42 |
+
# Compute embeddings for unique URLs
|
| 43 |
+
# ---------------------------------------------------
|
| 44 |
+
url_to_emb = {}
|
| 45 |
+
|
| 46 |
+
for url in tqdm(unique_urls, desc="Embedding unique images"):
|
| 47 |
+
try:
|
| 48 |
+
response = requests.get(url, timeout=10)
|
| 49 |
+
response.raise_for_status()
|
| 50 |
+
img = Image.open(io.BytesIO(response.content)).convert("RGB")
|
| 51 |
+
emb = model.encode(img, convert_to_numpy=True,
|
| 52 |
+
normalize_embeddings=True)
|
| 53 |
+
url_to_emb[url] = emb
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"⚠️ Error processing {url}: {e}")
|
| 56 |
+
url_to_emb[url] = np.zeros(512, dtype=np.float32) # fallback embedding
|
| 57 |
+
|
| 58 |
+
# ---------------------------------------------------
|
| 59 |
+
# Build embeddings array for all products
|
| 60 |
+
# ---------------------------------------------------
|
| 61 |
+
embeddings = []
|
| 62 |
+
for p in products:
|
| 63 |
+
embeddings.append(url_to_emb[p["image_url"]])
|
| 64 |
+
|
| 65 |
+
embeddings = np.array(embeddings).astype("float32")
|
| 66 |
+
|
| 67 |
+
print(f"✅ Built embeddings array: {embeddings.shape}")
|
| 68 |
+
|
| 69 |
+
# ---------------------------------------------------
|
| 70 |
+
# Create FAISS index (cosine similarity via inner product)
|
| 71 |
+
# ---------------------------------------------------
|
| 72 |
+
dim = embeddings.shape[1] # 512 for CLIP
|
| 73 |
+
index = faiss.IndexFlatIP(dim)
|
| 74 |
+
index.add(embeddings)
|
| 75 |
+
|
| 76 |
+
# ---------------------------------------------------
|
| 77 |
+
# Save FAISS index
|
| 78 |
+
# ---------------------------------------------------
|
| 79 |
+
faiss.write_index(index, INDEX_FILE)
|
| 80 |
+
print(f"🎉 Saved FAISS index with {index.ntotal} vectors → {INDEX_FILE}")
|
main.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, Form
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
import requests
|
| 4 |
+
import io
|
| 5 |
+
import faiss
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
|
| 12 |
+
# Init FastAPI
|
| 13 |
+
app = FastAPI()
|
| 14 |
+
app.add_middleware(
|
| 15 |
+
CORSMiddleware,
|
| 16 |
+
allow_origins=["*"], # you can restrict to your Vercel URL later
|
| 17 |
+
allow_credentials=True,
|
| 18 |
+
allow_methods=["*"],
|
| 19 |
+
allow_headers=["*"]
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load CLIP model once
|
| 23 |
+
print("🧠 Loading CLIP model...")
|
| 24 |
+
model = SentenceTransformer("clip-ViT-B-32")
|
| 25 |
+
|
| 26 |
+
# Load dataset
|
| 27 |
+
PRODUCTS_FILE = "products.json"
|
| 28 |
+
INDEX_FILE = "products.index"
|
| 29 |
+
|
| 30 |
+
with open(PRODUCTS_FILE, "r", encoding="utf-8", errors="ignore") as f:
|
| 31 |
+
products = json.load(f)
|
| 32 |
+
|
| 33 |
+
# Build or load FAISS index
|
| 34 |
+
if os.path.exists(INDEX_FILE):
|
| 35 |
+
print("📦 Loading existing FAISS index...")
|
| 36 |
+
index = faiss.read_index(INDEX_FILE)
|
| 37 |
+
else:
|
| 38 |
+
print("⚡ Building FAISS index from products.json (first startup only)...")
|
| 39 |
+
# Encode product names (lightweight, avoids downloading images)
|
| 40 |
+
texts = [p["name"] + " " + p["category"] + " " + p["brand"]
|
| 41 |
+
for p in products]
|
| 42 |
+
embeddings = model.encode(
|
| 43 |
+
texts, convert_to_numpy=True, normalize_embeddings=True)
|
| 44 |
+
index = faiss.IndexFlatIP(embeddings.shape[1])
|
| 45 |
+
index.add(embeddings.astype("float32"))
|
| 46 |
+
faiss.write_index(index, INDEX_FILE)
|
| 47 |
+
print(f"✅ Saved FAISS index with {index.ntotal} vectors")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def embed_image(img: Image.Image):
|
| 51 |
+
return model.encode(img, convert_to_numpy=True, normalize_embeddings=True)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def embed_text(query: str):
|
| 55 |
+
return model.encode([query], convert_to_numpy=True, normalize_embeddings=True)[0]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@app.post("/match")
|
| 59 |
+
async def match(
|
| 60 |
+
file: UploadFile = None,
|
| 61 |
+
image_url: str = Form(None),
|
| 62 |
+
min_score: float = Form(0.6),
|
| 63 |
+
top_k: int = Form(60),
|
| 64 |
+
categories: str = Form(None),
|
| 65 |
+
brands: str = Form(None),
|
| 66 |
+
min_price: float = Form(0),
|
| 67 |
+
max_price: float = Form(9999)
|
| 68 |
+
):
|
| 69 |
+
try:
|
| 70 |
+
# Get query image
|
| 71 |
+
if file:
|
| 72 |
+
img = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
| 73 |
+
elif image_url:
|
| 74 |
+
img = Image.open(io.BytesIO(requests.get(
|
| 75 |
+
image_url).content)).convert("RGB")
|
| 76 |
+
else:
|
| 77 |
+
return {"matches": []}
|
| 78 |
+
|
| 79 |
+
# Encode query
|
| 80 |
+
q_emb = embed_image(img).reshape(1, -1)
|
| 81 |
+
|
| 82 |
+
# Search FAISS
|
| 83 |
+
scores, ids = index.search(q_emb, top_k)
|
| 84 |
+
|
| 85 |
+
# Parse filters
|
| 86 |
+
categories = json.loads(categories) if categories else []
|
| 87 |
+
brands = json.loads(brands) if brands else []
|
| 88 |
+
|
| 89 |
+
# Collect results
|
| 90 |
+
results = []
|
| 91 |
+
for score, idx in zip(scores[0], ids[0]):
|
| 92 |
+
if score < min_score:
|
| 93 |
+
continue
|
| 94 |
+
p = products[idx]
|
| 95 |
+
|
| 96 |
+
# Apply filters
|
| 97 |
+
if categories and p["category"] not in categories:
|
| 98 |
+
continue
|
| 99 |
+
if brands and p["brand"] not in brands:
|
| 100 |
+
continue
|
| 101 |
+
if not (min_price <= p["price"] <= max_price):
|
| 102 |
+
continue
|
| 103 |
+
|
| 104 |
+
results.append({**p, "score": float(score)})
|
| 105 |
+
return {"matches": results}
|
| 106 |
+
except Exception as e:
|
| 107 |
+
return {"error": str(e)}
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
@app.post("/search_text")
|
| 111 |
+
async def search_text(
|
| 112 |
+
query: str = Form(...),
|
| 113 |
+
min_score: float = Form(0.6),
|
| 114 |
+
top_k: int = Form(60),
|
| 115 |
+
categories: str = Form(None),
|
| 116 |
+
brands: str = Form(None),
|
| 117 |
+
min_price: float = Form(0),
|
| 118 |
+
max_price: float = Form(9999)
|
| 119 |
+
):
|
| 120 |
+
try:
|
| 121 |
+
# Encode text query
|
| 122 |
+
q_emb = embed_text(query).reshape(1, -1)
|
| 123 |
+
|
| 124 |
+
# Search FAISS
|
| 125 |
+
scores, ids = index.search(q_emb, top_k)
|
| 126 |
+
|
| 127 |
+
# Parse filters
|
| 128 |
+
categories = json.loads(categories) if categories else []
|
| 129 |
+
brands = json.loads(brands) if brands else []
|
| 130 |
+
|
| 131 |
+
# Collect results
|
| 132 |
+
results = []
|
| 133 |
+
for score, idx in zip(scores[0], ids[0]):
|
| 134 |
+
if score < min_score:
|
| 135 |
+
continue
|
| 136 |
+
p = products[idx]
|
| 137 |
+
|
| 138 |
+
# Apply filters
|
| 139 |
+
if categories and p["category"] not in categories:
|
| 140 |
+
continue
|
| 141 |
+
if brands and p["brand"] not in brands:
|
| 142 |
+
continue
|
| 143 |
+
if not (min_price <= p["price"] <= max_price):
|
| 144 |
+
continue
|
| 145 |
+
|
| 146 |
+
results.append({**p, "score": float(score)})
|
| 147 |
+
return {"matches": results}
|
| 148 |
+
except Exception as e:
|
| 149 |
+
return {"error": str(e)}
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
faiss-cpu
|
| 4 |
+
sentence-transformers
|
| 5 |
+
pillow
|
| 6 |
+
requests
|