Update main.py
Browse files
main.py
CHANGED
|
@@ -15,10 +15,10 @@ os.environ["SENTENCE_TRANSFORMERS_HOME"] = "./cache"
|
|
| 15 |
|
| 16 |
app = FastAPI()
|
| 17 |
|
| 18 |
-
# Enable CORS (
|
| 19 |
app.add_middleware(
|
| 20 |
CORSMiddleware,
|
| 21 |
-
allow_origins=["*"],
|
| 22 |
allow_credentials=True,
|
| 23 |
allow_methods=["*"],
|
| 24 |
allow_headers=["*"],
|
|
@@ -42,24 +42,46 @@ def root():
|
|
| 42 |
|
| 43 |
|
| 44 |
@app.post("/search_text")
|
| 45 |
-
def search_text(query: str = Form(...), top_k: int = 5):
|
| 46 |
"""
|
| 47 |
Search products using text query.
|
| 48 |
"""
|
| 49 |
query_emb = model.encode([query], convert_to_numpy=True)
|
| 50 |
distances, indices = index.search(query_emb, top_k)
|
| 51 |
-
results = [products[i] for i in indices[0]]
|
| 52 |
-
return {"query": query, "results": results}
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
| 57 |
"""
|
| 58 |
-
Search products using image query.
|
| 59 |
"""
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
image_emb = model.encode([image], convert_to_numpy=True)
|
| 63 |
distances, indices = index.search(image_emb, top_k)
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
app = FastAPI()
|
| 17 |
|
| 18 |
+
# Enable CORS (so frontend on Netlify can call backend on HF)
|
| 19 |
app.add_middleware(
|
| 20 |
CORSMiddleware,
|
| 21 |
+
allow_origins=["*"], # for now allow all, can restrict to Netlify domain
|
| 22 |
allow_credentials=True,
|
| 23 |
allow_methods=["*"],
|
| 24 |
allow_headers=["*"],
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
@app.post("/search_text")
|
| 45 |
+
def search_text(query: str = Form(...), top_k: int = 5, min_score: float = 0.0):
|
| 46 |
"""
|
| 47 |
Search products using text query.
|
| 48 |
"""
|
| 49 |
query_emb = model.encode([query], convert_to_numpy=True)
|
| 50 |
distances, indices = index.search(query_emb, top_k)
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
results = []
|
| 53 |
+
for score, idx in zip(distances[0], indices[0]):
|
| 54 |
+
if score >= min_score: # filter by threshold
|
| 55 |
+
item = products[idx]
|
| 56 |
+
item["score"] = float(score)
|
| 57 |
+
results.append(item)
|
| 58 |
|
| 59 |
+
return {"matches": results}
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@app.post("/match") # 👈 Renamed to match frontend
|
| 63 |
+
async def search_image(file: UploadFile = File(None), image_url: str = Form(None), top_k: int = 5, min_score: float = 0.0):
|
| 64 |
"""
|
| 65 |
+
Search products using image query (upload or URL).
|
| 66 |
"""
|
| 67 |
+
if file:
|
| 68 |
+
image_bytes = await file.read()
|
| 69 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 70 |
+
elif image_url:
|
| 71 |
+
import requests
|
| 72 |
+
response = requests.get(image_url)
|
| 73 |
+
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
| 74 |
+
else:
|
| 75 |
+
return {"error": "No image provided"}
|
| 76 |
+
|
| 77 |
image_emb = model.encode([image], convert_to_numpy=True)
|
| 78 |
distances, indices = index.search(image_emb, top_k)
|
| 79 |
+
|
| 80 |
+
results = []
|
| 81 |
+
for score, idx in zip(distances[0], indices[0]):
|
| 82 |
+
if score >= min_score:
|
| 83 |
+
item = products[idx]
|
| 84 |
+
item["score"] = float(score)
|
| 85 |
+
results.append(item)
|
| 86 |
+
|
| 87 |
+
return {"matches": results}
|