Update main.py
Browse files
main.py
CHANGED
|
@@ -1,149 +1,65 @@
|
|
| 1 |
-
from fastapi import FastAPI, UploadFile, Form
|
| 2 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
-
import requests
|
| 4 |
-
import io
|
| 5 |
-
import faiss
|
| 6 |
-
import json
|
| 7 |
import os
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
-
from
|
|
|
|
| 10 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Init FastAPI
|
| 13 |
app = FastAPI()
|
|
|
|
|
|
|
| 14 |
app.add_middleware(
|
| 15 |
CORSMiddleware,
|
| 16 |
-
allow_origins=["*"],
|
| 17 |
allow_credentials=True,
|
| 18 |
allow_methods=["*"],
|
| 19 |
-
allow_headers=["*"]
|
| 20 |
)
|
| 21 |
|
| 22 |
-
# Load
|
| 23 |
-
|
| 24 |
-
model = SentenceTransformer("clip-ViT-B-32")
|
| 25 |
-
|
| 26 |
-
# Load dataset
|
| 27 |
-
PRODUCTS_FILE = "products.json"
|
| 28 |
-
INDEX_FILE = "products.index"
|
| 29 |
-
|
| 30 |
-
with open(PRODUCTS_FILE, "r", encoding="utf-8", errors="ignore") as f:
|
| 31 |
products = json.load(f)
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
print("📦 Loading existing FAISS index...")
|
| 36 |
-
index = faiss.read_index(INDEX_FILE)
|
| 37 |
-
else:
|
| 38 |
-
print("⚡ Building FAISS index from products.json (first startup only)...")
|
| 39 |
-
# Encode product names (lightweight, avoids downloading images)
|
| 40 |
-
texts = [p["name"] + " " + p["category"] + " " + p["brand"]
|
| 41 |
-
for p in products]
|
| 42 |
-
embeddings = model.encode(
|
| 43 |
-
texts, convert_to_numpy=True, normalize_embeddings=True)
|
| 44 |
-
index = faiss.IndexFlatIP(embeddings.shape[1])
|
| 45 |
-
index.add(embeddings.astype("float32"))
|
| 46 |
-
faiss.write_index(index, INDEX_FILE)
|
| 47 |
-
print(f"✅ Saved FAISS index with {index.ntotal} vectors")
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
def embed_image(img: Image.Image):
|
| 51 |
-
return model.encode(img, convert_to_numpy=True, normalize_embeddings=True)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def embed_text(query: str):
|
| 55 |
-
return model.encode([query], convert_to_numpy=True, normalize_embeddings=True)[0]
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
@app.post("/match")
|
| 59 |
-
async def match(
|
| 60 |
-
file: UploadFile = None,
|
| 61 |
-
image_url: str = Form(None),
|
| 62 |
-
min_score: float = Form(0.6),
|
| 63 |
-
top_k: int = Form(60),
|
| 64 |
-
categories: str = Form(None),
|
| 65 |
-
brands: str = Form(None),
|
| 66 |
-
min_price: float = Form(0),
|
| 67 |
-
max_price: float = Form(9999)
|
| 68 |
-
):
|
| 69 |
-
try:
|
| 70 |
-
# Get query image
|
| 71 |
-
if file:
|
| 72 |
-
img = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
| 73 |
-
elif image_url:
|
| 74 |
-
img = Image.open(io.BytesIO(requests.get(
|
| 75 |
-
image_url).content)).convert("RGB")
|
| 76 |
-
else:
|
| 77 |
-
return {"matches": []}
|
| 78 |
-
|
| 79 |
-
# Encode query
|
| 80 |
-
q_emb = embed_image(img).reshape(1, -1)
|
| 81 |
-
|
| 82 |
-
# Search FAISS
|
| 83 |
-
scores, ids = index.search(q_emb, top_k)
|
| 84 |
-
|
| 85 |
-
# Parse filters
|
| 86 |
-
categories = json.loads(categories) if categories else []
|
| 87 |
-
brands = json.loads(brands) if brands else []
|
| 88 |
-
|
| 89 |
-
# Collect results
|
| 90 |
-
results = []
|
| 91 |
-
for score, idx in zip(scores[0], ids[0]):
|
| 92 |
-
if score < min_score:
|
| 93 |
-
continue
|
| 94 |
-
p = products[idx]
|
| 95 |
-
|
| 96 |
-
# Apply filters
|
| 97 |
-
if categories and p["category"] not in categories:
|
| 98 |
-
continue
|
| 99 |
-
if brands and p["brand"] not in brands:
|
| 100 |
-
continue
|
| 101 |
-
if not (min_price <= p["price"] <= max_price):
|
| 102 |
-
continue
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
return {"error": str(e)}
|
| 108 |
|
| 109 |
|
| 110 |
@app.post("/search_text")
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
results = []
|
| 133 |
-
for score, idx in zip(scores[0], ids[0]):
|
| 134 |
-
if score < min_score:
|
| 135 |
-
continue
|
| 136 |
-
p = products[idx]
|
| 137 |
-
|
| 138 |
-
# Apply filters
|
| 139 |
-
if categories and p["category"] not in categories:
|
| 140 |
-
continue
|
| 141 |
-
if brands and p["brand"] not in brands:
|
| 142 |
-
continue
|
| 143 |
-
if not (min_price <= p["price"] <= max_price):
|
| 144 |
-
continue
|
| 145 |
-
|
| 146 |
-
results.append({**p, "score": float(score)})
|
| 147 |
-
return {"matches": results}
|
| 148 |
-
except Exception as e:
|
| 149 |
-
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import json
|
| 3 |
+
import faiss
|
| 4 |
import numpy as np
|
| 5 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import io
|
| 10 |
+
|
| 11 |
+
# Fix caching permissions for Hugging Face
|
| 12 |
+
os.environ["HF_HOME"] = "./cache"
|
| 13 |
+
os.environ["TRANSFORMERS_CACHE"] = "./cache"
|
| 14 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "./cache"
|
| 15 |
|
|
|
|
| 16 |
app = FastAPI()
|
| 17 |
+
|
| 18 |
+
# Enable CORS (for frontend HTML to connect)
|
| 19 |
app.add_middleware(
|
| 20 |
CORSMiddleware,
|
| 21 |
+
allow_origins=["*"],
|
| 22 |
allow_credentials=True,
|
| 23 |
allow_methods=["*"],
|
| 24 |
+
allow_headers=["*"],
|
| 25 |
)
|
| 26 |
|
| 27 |
+
# Load product metadata
|
| 28 |
+
with open("id_mapping.json", "r", encoding="utf-8") as f:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
products = json.load(f)
|
| 30 |
|
| 31 |
+
# Load FAISS index
|
| 32 |
+
index = faiss.read_index("products.index")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Load CLIP model
|
| 35 |
+
print("🧠 Loading CLIP model...")
|
| 36 |
+
model = SentenceTransformer("sentence-transformers/clip-ViT-B-32", cache_folder="./cache")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
@app.get("/")
|
| 40 |
+
def root():
|
| 41 |
+
return {"message": "🚀 Visual Product Matcher API is running!"}
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
@app.post("/search_text")
|
| 45 |
+
def search_text(query: str = Form(...), top_k: int = 5):
|
| 46 |
+
"""
|
| 47 |
+
Search products using text query.
|
| 48 |
+
"""
|
| 49 |
+
query_emb = model.encode([query], convert_to_numpy=True)
|
| 50 |
+
distances, indices = index.search(query_emb, top_k)
|
| 51 |
+
results = [products[i] for i in indices[0]]
|
| 52 |
+
return {"query": query, "results": results}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@app.post("/search_image")
|
| 56 |
+
async def search_image(file: UploadFile = File(...), top_k: int = 5):
|
| 57 |
+
"""
|
| 58 |
+
Search products using image query.
|
| 59 |
+
"""
|
| 60 |
+
image_bytes = await file.read()
|
| 61 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 62 |
+
image_emb = model.encode([image], convert_to_numpy=True)
|
| 63 |
+
distances, indices = index.search(image_emb, top_k)
|
| 64 |
+
results = [products[i] for i in indices[0]]
|
| 65 |
+
return {"results": results}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|