Spaces:
Runtime error
Runtime error
Meant to do last commit on run.py not app.py
Browse files
app.py
CHANGED
|
@@ -1,235 +1,311 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
import numpy as np
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
import openai
|
| 6 |
-
import torch
|
| 7 |
-
import zlib
|
| 8 |
-
import statistics
|
| 9 |
-
from torch.utils.data import DataLoader
|
| 10 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
-
from tqdm import tqdm
|
| 12 |
-
import math
|
| 13 |
-
import numpy as np
|
| 14 |
-
from datasets import load_dataset
|
| 15 |
-
from options import Options
|
| 16 |
-
from ipdb import set_trace as bp
|
| 17 |
-
from eval import *
|
| 18 |
-
from utils import evaluate_model
|
| 19 |
-
from analyze import analyze_data
|
| 20 |
-
import argparse
|
| 21 |
import os
|
| 22 |
import sys
|
| 23 |
-
import
|
| 24 |
-
import
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
else:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
import sys
|
| 5 |
+
import time
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from threading import Thread
|
| 8 |
+
|
| 9 |
+
# Add the path to the "src" directory of detect-pretrain-code-contamination to the sys.path
|
| 10 |
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "detect-pretrain-code-contamination"))
|
| 11 |
+
src_dir = os.path.join(project_root, "src")
|
| 12 |
+
sys.path.insert(0, src_dir)
|
| 13 |
+
|
| 14 |
+
import run as evaluator # Import the run module
|
| 15 |
+
from src.css_html import custom_css
|
| 16 |
+
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT, SUBMISSION_TEXT_2
|
| 17 |
+
from src.envs import API, H4_TOKEN, REPO_ID
|
| 18 |
+
from huggingface_hub import HfApi
|
| 19 |
+
from src.utils import (
|
| 20 |
+
AutoEvalColumn,
|
| 21 |
+
fields,
|
| 22 |
+
is_model_on_hub,
|
| 23 |
+
make_clickable_names,
|
| 24 |
+
styled_error,
|
| 25 |
+
styled_message,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 29 |
+
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 30 |
+
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 31 |
+
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 32 |
+
|
| 33 |
+
# CONFIGURATION:
|
| 34 |
+
ref_model = "huggyllama/llama-7b"
|
| 35 |
+
test_datasets = ["truthful_qa","cais/mmlu","ai2_arc","gsm8k","Rowan/hellaswag","winogrande"]
|
| 36 |
+
modelQueue = []
|
| 37 |
+
|
| 38 |
+
def restart_space(): #Most dumbest update function to ever exist, I'm sobbing in tears as I've tried to make gradio update the leaderboard literally any other way.
|
| 39 |
+
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def save_to_txt(model, results, model_type):
|
| 43 |
+
file_path = "data/code_eval_board.csv"
|
| 44 |
+
|
| 45 |
+
with open(file_path, "a") as f:
|
| 46 |
+
f.write(f"\n{model_type},{model}," + str(results["arc"]) + "," + str(results["hellaswag"]) + "," + str(results["mmlu"]) + "," + str(results["truthfulQA"]) + "," + str(results["winogrande"]) + "," + str(results["gsm8k"]))
|
| 47 |
+
f.close()
|
| 48 |
+
|
| 49 |
+
restart_space()
|
| 50 |
+
|
| 51 |
+
def run_test(model,ref_model,data):
|
| 52 |
+
print(f"|| TESTING {data} ||")
|
| 53 |
+
return evaluator.main(
|
| 54 |
+
target_model=f"{model}",
|
| 55 |
+
ref_model=f"{ref_model}",
|
| 56 |
+
output_dir="out",
|
| 57 |
+
data=f"{data}",
|
| 58 |
+
length=64,
|
| 59 |
+
key_name="input",
|
| 60 |
+
ratio_gen=0.4
|
| 61 |
+
) # Call the main function in detect-pretrain-code-contamination/src/run.py
|
| 62 |
+
|
| 63 |
+
def evaluate(model,model_type):
|
| 64 |
+
global ref_model
|
| 65 |
+
print(f"|| EVALUATING {model} ||")
|
| 66 |
+
results = {
|
| 67 |
+
"arc": run_test(model, ref_model, test_datasets[2]),
|
| 68 |
+
"hellaswag": run_test(model, ref_model, test_datasets[4]),
|
| 69 |
+
"mmlu": run_test(model, ref_model, test_datasets[1]),
|
| 70 |
+
"truthfulQA": run_test(model, ref_model, test_datasets[0]),
|
| 71 |
+
"winogrande": run_test(model, ref_model, test_datasets[5]),
|
| 72 |
+
"gsm8k": run_test(model, ref_model, test_datasets[3]),
|
| 73 |
+
"ref_model": ref_model,
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
# Save to .txt file in /Evaluations/{model}
|
| 77 |
+
save_to_txt(model, results, model_type)
|
| 78 |
+
return "\n".join([f"{k}:{results[k]}" for k in results])
|
| 79 |
+
|
| 80 |
+
def worker_thread():
|
| 81 |
+
global modelQueue, server
|
| 82 |
+
while True:
|
| 83 |
+
for submission in modelQueue:
|
| 84 |
+
evaluate(submission[0],submission[1].split(" ")[0])
|
| 85 |
+
modelQueue.pop(modelQueue.index(submission))
|
| 86 |
+
time.sleep(1)
|
| 87 |
+
time.sleep(1)
|
| 88 |
+
|
| 89 |
+
def queue(model,model_type):
|
| 90 |
+
global modelQueue
|
| 91 |
+
modelQueue.append([model,model_type])
|
| 92 |
+
print(f"QUEUE:\n{modelQueue}")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
### bigcode/bigcode-models-leaderboard
|
| 96 |
+
def add_new_eval(
|
| 97 |
+
model: str,
|
| 98 |
+
revision: str,
|
| 99 |
+
precision: str,
|
| 100 |
+
model_type: str,
|
| 101 |
+
):
|
| 102 |
+
precision = precision
|
| 103 |
+
|
| 104 |
+
if model_type is None or model_type == "" or model_type == []:
|
| 105 |
+
return styled_error("Please select a model type.")
|
| 106 |
+
print(model_type)
|
| 107 |
+
# check the model actually exists before adding the eval
|
| 108 |
+
if revision == "":
|
| 109 |
+
revision = "main"
|
| 110 |
+
|
| 111 |
+
model_on_hub, error = is_model_on_hub(model, revision)
|
| 112 |
+
if not model_on_hub:
|
| 113 |
+
return styled_error(f'Model "{model}" {error}')
|
| 114 |
+
|
| 115 |
+
print("Adding new eval")
|
| 116 |
+
queue(model,model_type)
|
| 117 |
+
return styled_message("Your request has been submitted to the evaluation queue!\n")
|
| 118 |
+
|
| 119 |
+
def select_columns(df, columns):
|
| 120 |
+
always_here_cols = [
|
| 121 |
+
AutoEvalColumn.model_type_symbol.name,
|
| 122 |
+
AutoEvalColumn.model.name,
|
| 123 |
+
]
|
| 124 |
+
# We use COLS to maintain sorting
|
| 125 |
+
filtered_df = df[
|
| 126 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
| 127 |
+
]
|
| 128 |
+
return filtered_df
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def filter_items(df, leaderboard_table, query):
|
| 132 |
+
if query == "All":
|
| 133 |
+
return df[leaderboard_table.columns]
|
| 134 |
else:
|
| 135 |
+
query = query[0] # take only the emoji character
|
| 136 |
+
filtered_df = df[(df["T"] == query)]
|
| 137 |
+
return filtered_df[leaderboard_table.columns]
|
| 138 |
+
|
| 139 |
+
def search_table(df, leaderboard_table, query):
|
| 140 |
+
filtered_df = df[(df["Models"].str.contains(query, case=False))]
|
| 141 |
+
return filtered_df[leaderboard_table.columns]
|
| 142 |
+
|
| 143 |
+
demo = gr.Blocks(css=custom_css)
|
| 144 |
+
with demo:
|
| 145 |
+
with gr.Row():
|
| 146 |
+
gr.Markdown(
|
| 147 |
+
"""<div style="text-align: center;"><h1> π LLM Contamination Detector </h1></div>\
|
| 148 |
+
<br>\
|
| 149 |
+
<p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard">π€ Big Code Models Leaderboard οΏ½οΏ½οΏ½</a>, we use an implementation of <a href="https://huggingface.co/papers/2310.16789">Detecting Pretraining Data from Large Language Models</a> paper found in <a href="https://github.com/swj0419/detect-pretrain-code-contamination/tree/master">this github repo</a>, to provide contamination scores for LLMs on the datasets used by Open LLM Leaderboard.\
|
| 150 |
+
This space should NOT be used to flag or accuse models of cheating / being contamined, instead, it should form part of a holistic assesment by the parties involved.</p>""",
|
| 151 |
+
elem_classes="markdown-text",
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 155 |
+
with gr.Column():
|
| 156 |
+
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
|
| 157 |
+
with gr.TabItem("π Evaluations", id=0):
|
| 158 |
+
with gr.Column():
|
| 159 |
+
with gr.Accordion("β‘οΈ See filters", open=False):
|
| 160 |
+
shown_columns = gr.CheckboxGroup(
|
| 161 |
+
choices=[
|
| 162 |
+
c
|
| 163 |
+
for c in COLS
|
| 164 |
+
if c
|
| 165 |
+
not in [
|
| 166 |
+
AutoEvalColumn.dummy.name,
|
| 167 |
+
AutoEvalColumn.model.name,
|
| 168 |
+
AutoEvalColumn.model_type_symbol.name,
|
| 169 |
+
]
|
| 170 |
+
],
|
| 171 |
+
value=[
|
| 172 |
+
c
|
| 173 |
+
for c in COLS_LITE
|
| 174 |
+
if c
|
| 175 |
+
not in [
|
| 176 |
+
AutoEvalColumn.dummy.name,
|
| 177 |
+
AutoEvalColumn.model.name,
|
| 178 |
+
AutoEvalColumn.model_type_symbol.name,
|
| 179 |
+
]
|
| 180 |
+
],
|
| 181 |
+
label="",
|
| 182 |
+
elem_id="column-select",
|
| 183 |
+
interactive=True,
|
| 184 |
+
)
|
| 185 |
+
# with gr.Column(min_width=780):
|
| 186 |
+
with gr.Row():
|
| 187 |
+
search_bar = gr.Textbox(
|
| 188 |
+
placeholder="π Search for a model and press ENTER...",
|
| 189 |
+
show_label=False,
|
| 190 |
+
elem_id="search-bar",
|
| 191 |
+
)
|
| 192 |
+
filter_columns = gr.Radio(
|
| 193 |
+
label="β Filter model types",
|
| 194 |
+
choices=["All", "π’ Base", "πΆ Finetuned"],
|
| 195 |
+
value="All",
|
| 196 |
+
elem_id="filter-columns",
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
df = pd.read_csv("data/code_eval_board.csv")
|
| 200 |
+
leaderboard_df = gr.components.Dataframe(
|
| 201 |
+
value=df[
|
| 202 |
+
[
|
| 203 |
+
AutoEvalColumn.model_type_symbol.name,
|
| 204 |
+
AutoEvalColumn.model.name,
|
| 205 |
+
]
|
| 206 |
+
+ shown_columns.value
|
| 207 |
+
],
|
| 208 |
+
headers=[
|
| 209 |
+
AutoEvalColumn.model_type_symbol.name,
|
| 210 |
+
AutoEvalColumn.model.name,
|
| 211 |
+
]
|
| 212 |
+
+ shown_columns.value,
|
| 213 |
+
datatype=TYPES,
|
| 214 |
+
elem_id="leaderboard-table",
|
| 215 |
+
interactive=False,
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
hidden_leaderboard_df = gr.components.Dataframe(
|
| 219 |
+
value=df,
|
| 220 |
+
headers=COLS,
|
| 221 |
+
datatype=["str" for _ in range(len(COLS))],
|
| 222 |
+
visible=False,
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
search_bar.submit(
|
| 226 |
+
search_table,
|
| 227 |
+
[hidden_leaderboard_df, leaderboard_df, search_bar],
|
| 228 |
+
leaderboard_df,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
filter_columns.change(
|
| 232 |
+
filter_items,
|
| 233 |
+
[hidden_leaderboard_df, leaderboard_df, filter_columns],
|
| 234 |
+
leaderboard_df,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
shown_columns.change(
|
| 238 |
+
select_columns,
|
| 239 |
+
[hidden_leaderboard_df, shown_columns],
|
| 240 |
+
leaderboard_df,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
gr.Markdown(
|
| 244 |
+
"""
|
| 245 |
+
**Notes:**
|
| 246 |
+
- The Huggingface team is working on their own implementation of this paper as a space, I'll be leaving this space up until that's available.
|
| 247 |
+
- Some scores may not be entirely accurate according to the paper cited as I still work out the kinks and innacuracies of this implementation.
|
| 248 |
+
- For any issues, questions, or comments either open a discussion in this space's community tab or message me directly to my discord: yeyito777.
|
| 249 |
+
- Make sure to check the pinned discussion in this space's community tab for implementation details I'm not 100% about.
|
| 250 |
+
""",
|
| 251 |
+
elem_classes="markdown-text",
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
with gr.TabItem("π About", id=2):
|
| 255 |
+
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
|
| 256 |
+
with gr.TabItem("π οΈ Submit models", id=3):
|
| 257 |
+
gr.Markdown(SUBMISSION_TEXT)
|
| 258 |
+
gr.Markdown(
|
| 259 |
+
"## π€ Submit a model here:", elem_classes="markdown-text"
|
| 260 |
+
)
|
| 261 |
+
with gr.Column():
|
| 262 |
+
with gr.Row():
|
| 263 |
+
model_name = gr.Textbox(label="Model name")
|
| 264 |
+
revision_name = gr.Textbox(
|
| 265 |
+
label="revision", placeholder="main"
|
| 266 |
+
)
|
| 267 |
+
with gr.Row():
|
| 268 |
+
precision = gr.Dropdown(
|
| 269 |
+
choices=[
|
| 270 |
+
"float16",
|
| 271 |
+
"bfloat16",
|
| 272 |
+
"8bit",
|
| 273 |
+
"4bit",
|
| 274 |
+
],
|
| 275 |
+
label="Precision",
|
| 276 |
+
multiselect=False,
|
| 277 |
+
value="float16",
|
| 278 |
+
interactive=True,
|
| 279 |
+
)
|
| 280 |
+
model_type = gr.Dropdown(
|
| 281 |
+
choices=["π’ base", "πΆ instruction-tuned"],
|
| 282 |
+
label="Model type",
|
| 283 |
+
multiselect=False,
|
| 284 |
+
value=None,
|
| 285 |
+
interactive=True,
|
| 286 |
+
)
|
| 287 |
+
submit_button = gr.Button("Submit Eval")
|
| 288 |
+
submission_result = gr.Markdown()
|
| 289 |
+
submit_button.click(
|
| 290 |
+
add_new_eval,
|
| 291 |
+
inputs=[model_name, revision_name, precision, model_type],
|
| 292 |
+
outputs=[submission_result],
|
| 293 |
+
)
|
| 294 |
+
gr.Markdown(SUBMISSION_TEXT_2)
|
| 295 |
+
|
| 296 |
+
thread = Thread(target=worker_thread)
|
| 297 |
+
thread.start()
|
| 298 |
+
demo.launch(share=True)
|
| 299 |
+
|
| 300 |
+
# Some worries:
|
| 301 |
+
# 1. Am I testing things correctly in eval.py, following the template format?
|
| 302 |
+
|
| 303 |
+
# 2. Am I choosing the correct splits in run.py? The higherarchy I use is: test > val > train
|
| 304 |
+
# (As in: if test exists, I go with that, then validation, then default)
|
| 305 |
+
|
| 306 |
+
# 3. I decided to go with winogrande_debiased instead of winogrande_l arbitrarily.
|
| 307 |
+
# (Not sure which one open llm leaderboard uses, or what is the standard)
|
| 308 |
+
|
| 309 |
+
# 4. I'm unsure why in eval.py we append the output at the end of the input.
|
| 310 |
|
| 311 |
+
# 5. Currently I'm using huggyllama/llama-7b as ref_model, should I switch to llama2-7B? Maybe Mistral-7B?
|