Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Based on https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py | |
| """ | |
| import math | |
| from typing import Any, Dict, Iterable, Optional, Sequence, Union | |
| import blobfile as bf | |
| import numpy as np | |
| import torch as th | |
| import yaml | |
| def diffusion_from_config(config: Union[str, Dict[str, Any]]) -> "GaussianDiffusion": | |
| if isinstance(config, str): | |
| with bf.BlobFile(config, "rb") as f: | |
| obj = yaml.load(f, Loader=yaml.SafeLoader) | |
| return diffusion_from_config(obj) | |
| schedule = config["schedule"] | |
| steps = config["timesteps"] | |
| respace = config.get("respacing", None) | |
| mean_type = config.get("mean_type", "epsilon") | |
| betas = get_named_beta_schedule(schedule, steps, **config.get("schedule_args", {})) | |
| channel_scales = config.get("channel_scales", None) | |
| channel_biases = config.get("channel_biases", None) | |
| if channel_scales is not None: | |
| channel_scales = np.array(channel_scales) | |
| if channel_biases is not None: | |
| channel_biases = np.array(channel_biases) | |
| kwargs = dict( | |
| betas=betas, | |
| model_mean_type=mean_type, | |
| model_var_type="learned_range", | |
| loss_type="mse", | |
| channel_scales=channel_scales, | |
| channel_biases=channel_biases, | |
| ) | |
| if respace is None: | |
| return GaussianDiffusion(**kwargs) | |
| else: | |
| return SpacedDiffusion(use_timesteps=space_timesteps(steps, respace), **kwargs) | |
| def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): | |
| """ | |
| This is the deprecated API for creating beta schedules. | |
| See get_named_beta_schedule() for the new library of schedules. | |
| """ | |
| if beta_schedule == "linear": | |
| betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) | |
| else: | |
| raise NotImplementedError(beta_schedule) | |
| assert betas.shape == (num_diffusion_timesteps,) | |
| return betas | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, **extra_args: float): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = 1000 / num_diffusion_timesteps | |
| return get_beta_schedule( | |
| "linear", | |
| beta_start=scale * 0.0001, | |
| beta_end=scale * 0.02, | |
| num_diffusion_timesteps=num_diffusion_timesteps, | |
| ) | |
| elif schedule_name == "cosine": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
| ) | |
| elif schedule_name == "inv_parabola": | |
| exponent = extra_args.get("power", 2.0) | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: 1 - t**exponent, | |
| ) | |
| elif schedule_name == "translated_parabola": | |
| exponent = extra_args.get("power", 2.0) | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: (1 - t) ** exponent, | |
| ) | |
| elif schedule_name == "exp": | |
| coefficient = extra_args.get("coefficient", -12.0) | |
| return betas_for_alpha_bar(num_diffusion_timesteps, lambda t: math.exp(t * coefficient)) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| def space_timesteps(num_timesteps, section_counts): | |
| """ | |
| Create a list of timesteps to use from an original diffusion process, | |
| given the number of timesteps we want to take from equally-sized portions | |
| of the original process. | |
| For example, if there's 300 timesteps and the section counts are [10,15,20] | |
| then the first 100 timesteps are strided to be 10 timesteps, the second 100 | |
| are strided to be 15 timesteps, and the final 100 are strided to be 20. | |
| :param num_timesteps: the number of diffusion steps in the original | |
| process to divide up. | |
| :param section_counts: either a list of numbers, or a string containing | |
| comma-separated numbers, indicating the step count | |
| per section. As a special case, use "ddimN" where N | |
| is a number of steps to use the striding from the | |
| DDIM paper. | |
| :return: a set of diffusion steps from the original process to use. | |
| """ | |
| if isinstance(section_counts, str): | |
| if section_counts.startswith("ddim"): | |
| desired_count = int(section_counts[len("ddim") :]) | |
| for i in range(1, num_timesteps): | |
| if len(range(0, num_timesteps, i)) == desired_count: | |
| return set(range(0, num_timesteps, i)) | |
| raise ValueError(f"cannot create exactly {num_timesteps} steps with an integer stride") | |
| elif section_counts.startswith("exact"): | |
| res = set(int(x) for x in section_counts[len("exact") :].split(",")) | |
| for x in res: | |
| if x < 0 or x >= num_timesteps: | |
| raise ValueError(f"timestep out of bounds: {x}") | |
| return res | |
| section_counts = [int(x) for x in section_counts.split(",")] | |
| size_per = num_timesteps // len(section_counts) | |
| extra = num_timesteps % len(section_counts) | |
| start_idx = 0 | |
| all_steps = [] | |
| for i, section_count in enumerate(section_counts): | |
| size = size_per + (1 if i < extra else 0) | |
| if size < section_count: | |
| raise ValueError(f"cannot divide section of {size} steps into {section_count}") | |
| if section_count <= 1: | |
| frac_stride = 1 | |
| else: | |
| frac_stride = (size - 1) / (section_count - 1) | |
| cur_idx = 0.0 | |
| taken_steps = [] | |
| for _ in range(section_count): | |
| taken_steps.append(start_idx + round(cur_idx)) | |
| cur_idx += frac_stride | |
| all_steps += taken_steps | |
| start_idx += size | |
| return set(all_steps) | |
| class GaussianDiffusion: | |
| """ | |
| Utilities for training and sampling diffusion models. | |
| Ported directly from here: | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
| :param betas: a 1-D array of betas for each diffusion timestep from T to 1. | |
| :param model_mean_type: a string determining what the model outputs. | |
| :param model_var_type: a string determining how variance is output. | |
| :param loss_type: a string determining the loss function to use. | |
| :param discretized_t0: if True, use discrete gaussian loss for t=0. Only | |
| makes sense for images. | |
| :param channel_scales: a multiplier to apply to x_start in training_losses | |
| and sampling functions. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| betas: Sequence[float], | |
| model_mean_type: str, | |
| model_var_type: str, | |
| loss_type: str, | |
| discretized_t0: bool = False, | |
| channel_scales: Optional[np.ndarray] = None, | |
| channel_biases: Optional[np.ndarray] = None, | |
| ): | |
| self.model_mean_type = model_mean_type | |
| self.model_var_type = model_var_type | |
| self.loss_type = loss_type | |
| self.discretized_t0 = discretized_t0 | |
| self.channel_scales = channel_scales | |
| self.channel_biases = channel_biases | |
| # Use float64 for accuracy. | |
| betas = np.array(betas, dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
| self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
| assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = ( | |
| betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
| self.posterior_log_variance_clipped = np.log( | |
| np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
| ) | |
| self.posterior_mean_coef1 = ( | |
| betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.posterior_mean_coef2 = ( | |
| (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) | |
| ) | |
| def get_sigmas(self, t): | |
| return _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, t.shape) | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
| return mean, variance, log_variance | |
| def q_sample(self, x_start, t, noise=None): | |
| """ | |
| Diffuse the data for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial data batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| assert noise.shape == x_start.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
| ) | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape | |
| posterior_mean = ( | |
| _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x_t.shape | |
| ) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance( | |
| self, model, x, t, clip_denoised=False, denoised_fn=None, model_kwargs=None | |
| ): | |
| """ | |
| Apply the model to get p(x_{t-1} | x_t), as well as a prediction of | |
| the initial x, x_0. | |
| :param model: the model, which takes a signal and a batch of timesteps | |
| as input. | |
| :param x: the [N x C x ...] tensor at time t. | |
| :param t: a 1-D Tensor of timesteps. | |
| :param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. Applies before | |
| clip_denoised. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict with the following keys: | |
| - 'mean': the model mean output. | |
| - 'variance': the model variance output. | |
| - 'log_variance': the log of 'variance'. | |
| - 'pred_xstart': the prediction for x_0. | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| B, C = x.shape[:2] | |
| assert t.shape == (B,) | |
| model_output = model(x, t, **model_kwargs) | |
| if isinstance(model_output, tuple): | |
| model_output, extra = model_output | |
| else: | |
| extra = None | |
| if self.model_var_type in ["learned", "learned_range"]: | |
| assert model_output.shape == (B, C * 2, *x.shape[2:]) | |
| model_output, model_var_values = th.split(model_output, C, dim=1) | |
| if self.model_var_type == "learned": | |
| model_log_variance = model_var_values | |
| model_variance = th.exp(model_log_variance) | |
| else: | |
| min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) | |
| max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) | |
| # The model_var_values is [-1, 1] for [min_var, max_var]. | |
| frac = (model_var_values + 1) / 2 | |
| model_log_variance = frac * max_log + (1 - frac) * min_log | |
| model_variance = th.exp(model_log_variance) | |
| else: | |
| model_variance, model_log_variance = { | |
| # for fixedlarge, we set the initial (log-)variance like so | |
| # to get a better decoder log likelihood. | |
| "fixed_large": ( | |
| np.append(self.posterior_variance[1], self.betas[1:]), | |
| np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
| ), | |
| "fixed_small": ( | |
| self.posterior_variance, | |
| self.posterior_log_variance_clipped, | |
| ), | |
| }[self.model_var_type] | |
| model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
| model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) | |
| def process_xstart(x): | |
| if denoised_fn is not None: | |
| x = denoised_fn(x) | |
| if clip_denoised: | |
| return x.clamp(-1, 1) | |
| return x | |
| if self.model_mean_type == "x_prev": | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) | |
| ) | |
| model_mean = model_output | |
| elif self.model_mean_type in ["x_start", "epsilon"]: | |
| if self.model_mean_type == "x_start": | |
| pred_xstart = process_xstart(model_output) | |
| else: | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) | |
| ) | |
| model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
| return { | |
| "mean": model_mean, | |
| "variance": model_variance, | |
| "log_variance": model_log_variance, | |
| "pred_xstart": pred_xstart, | |
| "extra": extra, | |
| } | |
| def _predict_xstart_from_eps(self, x_t, t, eps): | |
| assert x_t.shape == eps.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
| ) | |
| def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
| assert x_t.shape == xprev.shape | |
| return ( # (xprev - coef2*x_t) / coef1 | |
| _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
| - _extract_into_tensor( | |
| self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape | |
| ) | |
| * x_t | |
| ) | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute the mean for the previous step, given a function cond_fn that | |
| computes the gradient of a conditional log probability with respect to | |
| x. In particular, cond_fn computes grad(log(p(y|x))), and we want to | |
| condition on y. | |
| This uses the conditioning strategy from Sohl-Dickstein et al. (2015). | |
| """ | |
| gradient = cond_fn(x, t, **(model_kwargs or {})) | |
| new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() | |
| return new_mean | |
| def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute what the p_mean_variance output would have been, should the | |
| model's score function be conditioned by cond_fn. | |
| See condition_mean() for details on cond_fn. | |
| Unlike condition_mean(), this instead uses the conditioning strategy | |
| from Song et al (2020). | |
| """ | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) | |
| eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **(model_kwargs or {})) | |
| out = p_mean_var.copy() | |
| out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) | |
| out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) | |
| return out | |
| def p_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=False, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param model: the model to sample from. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - 'sample': a random sample from the model. | |
| - 'pred_xstart': a prediction of x_0. | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| noise = th.randn_like(x) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| if cond_fn is not None: | |
| out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def p_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=False, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| temp=1.0, | |
| ): | |
| """ | |
| Generate samples from the model. | |
| :param model: the model module. | |
| :param shape: the shape of the samples, (N, C, H, W). | |
| :param noise: if specified, the noise from the encoder to sample. | |
| Should be of the same shape as `shape`. | |
| :param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param device: if specified, the device to create the samples on. | |
| If not specified, use a model parameter's device. | |
| :param progress: if True, show a tqdm progress bar. | |
| :return: a non-differentiable batch of samples. | |
| """ | |
| final = None | |
| for sample in self.p_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| temp=temp, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def p_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=False, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| temp=1.0, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) * temp | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| with th.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| yield self.unscale_out_dict(out) | |
| img = out["sample"] | |
| def ddim_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=False, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using DDIM. | |
| Same usage as p_sample(). | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if cond_fn is not None: | |
| out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| sigma = ( | |
| eta | |
| * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
| * th.sqrt(1 - alpha_bar / alpha_bar_prev) | |
| ) | |
| # Equation 12. | |
| noise = th.randn_like(x) | |
| mean_pred = ( | |
| out["pred_xstart"] * th.sqrt(alpha_bar_prev) | |
| + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps | |
| ) | |
| nonzero_mask = ( | |
| (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
| ) # no noise when t == 0 | |
| sample = mean_pred + nonzero_mask * sigma * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def ddim_reverse_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=False, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t+1} from the model using DDIM reverse ODE. | |
| """ | |
| assert eta == 0.0, "Reverse ODE only for deterministic path" | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if cond_fn is not None: | |
| out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x | |
| - out["pred_xstart"] | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) | |
| alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) | |
| # Equation 12. reversed | |
| mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps | |
| return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} | |
| def ddim_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=False, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| temp=1.0, | |
| ): | |
| """ | |
| Generate samples from the model using DDIM. | |
| Same usage as p_sample_loop(). | |
| """ | |
| final = None | |
| for sample in self.ddim_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| eta=eta, | |
| temp=temp, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def ddim_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=False, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| temp=1.0, | |
| ): | |
| """ | |
| Use DDIM to sample from the model and yield intermediate samples from | |
| each timestep of DDIM. | |
| Same usage as p_sample_loop_progressive(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) * temp | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| with th.no_grad(): | |
| out = self.ddim_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| eta=eta, | |
| ) | |
| yield self.unscale_out_dict(out) | |
| img = out["sample"] | |
| def _vb_terms_bpd(self, model, x_start, x_t, t, clip_denoised=False, model_kwargs=None): | |
| """ | |
| Get a term for the variational lower-bound. | |
| The resulting units are bits (rather than nats, as one might expect). | |
| This allows for comparison to other papers. | |
| :return: a dict with the following keys: | |
| - 'output': a shape [N] tensor of NLLs or KLs. | |
| - 'pred_xstart': the x_0 predictions. | |
| """ | |
| true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( | |
| x_start=x_start, x_t=x_t, t=t | |
| ) | |
| out = self.p_mean_variance( | |
| model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs | |
| ) | |
| kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]) | |
| kl = mean_flat(kl) / np.log(2.0) | |
| decoder_nll = -discretized_gaussian_log_likelihood( | |
| x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] | |
| ) | |
| if not self.discretized_t0: | |
| decoder_nll = th.zeros_like(decoder_nll) | |
| assert decoder_nll.shape == x_start.shape | |
| decoder_nll = mean_flat(decoder_nll) / np.log(2.0) | |
| # At the first timestep return the decoder NLL, | |
| # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
| output = th.where((t == 0), decoder_nll, kl) | |
| return { | |
| "output": output, | |
| "pred_xstart": out["pred_xstart"], | |
| "extra": out["extra"], | |
| } | |
| def training_losses( | |
| self, model, x_start, t, model_kwargs=None, noise=None | |
| ) -> Dict[str, th.Tensor]: | |
| """ | |
| Compute training losses for a single timestep. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param t: a batch of timestep indices. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param noise: if specified, the specific Gaussian noise to try to remove. | |
| :return: a dict with the key "loss" containing a tensor of shape [N]. | |
| Some mean or variance settings may also have other keys. | |
| """ | |
| x_start = self.scale_channels(x_start) | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start, t, noise=noise) | |
| terms = {} | |
| if self.loss_type == "kl" or self.loss_type == "rescaled_kl": | |
| vb_terms = self._vb_terms_bpd( | |
| model=model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t, | |
| clip_denoised=False, | |
| model_kwargs=model_kwargs, | |
| ) | |
| terms["loss"] = vb_terms["output"] | |
| if self.loss_type == "rescaled_kl": | |
| terms["loss"] *= self.num_timesteps | |
| extra = vb_terms["extra"] | |
| elif self.loss_type == "mse" or self.loss_type == "rescaled_mse": | |
| model_output = model(x_t, t, **model_kwargs) | |
| if isinstance(model_output, tuple): | |
| model_output, extra = model_output | |
| else: | |
| extra = {} | |
| if self.model_var_type in [ | |
| "learned", | |
| "learned_range", | |
| ]: | |
| B, C = x_t.shape[:2] | |
| assert model_output.shape == ( | |
| B, | |
| C * 2, | |
| *x_t.shape[2:], | |
| ), f"{model_output.shape} != {(B, C * 2, *x_t.shape[2:])}" | |
| model_output, model_var_values = th.split(model_output, C, dim=1) | |
| # Learn the variance using the variational bound, but don't let | |
| # it affect our mean prediction. | |
| frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) | |
| terms["vb"] = self._vb_terms_bpd( | |
| model=lambda *args, r=frozen_out: r, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t, | |
| clip_denoised=False, | |
| )["output"] | |
| if self.loss_type == "rescaled_mse": | |
| # Divide by 1000 for equivalence with initial implementation. | |
| # Without a factor of 1/1000, the VB term hurts the MSE term. | |
| terms["vb"] *= self.num_timesteps / 1000.0 | |
| target = { | |
| "x_prev": self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0], | |
| "x_start": x_start, | |
| "epsilon": noise, | |
| }[self.model_mean_type] | |
| assert model_output.shape == target.shape == x_start.shape | |
| terms["mse"] = mean_flat((target - model_output) ** 2) | |
| if "vb" in terms: | |
| terms["loss"] = terms["mse"] + terms["vb"] | |
| else: | |
| terms["loss"] = terms["mse"] | |
| else: | |
| raise NotImplementedError(self.loss_type) | |
| if "losses" in extra: | |
| terms.update({k: loss for k, (loss, _scale) in extra["losses"].items()}) | |
| for loss, scale in extra["losses"].values(): | |
| terms["loss"] = terms["loss"] + loss * scale | |
| return terms | |
| def _prior_bpd(self, x_start): | |
| """ | |
| Get the prior KL term for the variational lower-bound, measured in | |
| bits-per-dim. | |
| This term can't be optimized, as it only depends on the encoder. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :return: a batch of [N] KL values (in bits), one per batch element. | |
| """ | |
| batch_size = x_start.shape[0] | |
| t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
| qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
| kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
| return mean_flat(kl_prior) / np.log(2.0) | |
| def calc_bpd_loop(self, model, x_start, clip_denoised=False, model_kwargs=None): | |
| """ | |
| Compute the entire variational lower-bound, measured in bits-per-dim, | |
| as well as other related quantities. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param clip_denoised: if True, clip denoised samples. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - total_bpd: the total variational lower-bound, per batch element. | |
| - prior_bpd: the prior term in the lower-bound. | |
| - vb: an [N x T] tensor of terms in the lower-bound. | |
| - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. | |
| - mse: an [N x T] tensor of epsilon MSEs for each timestep. | |
| """ | |
| device = x_start.device | |
| batch_size = x_start.shape[0] | |
| vb = [] | |
| xstart_mse = [] | |
| mse = [] | |
| for t in list(range(self.num_timesteps))[::-1]: | |
| t_batch = th.tensor([t] * batch_size, device=device) | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) | |
| # Calculate VLB term at the current timestep | |
| with th.no_grad(): | |
| out = self._vb_terms_bpd( | |
| model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t_batch, | |
| clip_denoised=clip_denoised, | |
| model_kwargs=model_kwargs, | |
| ) | |
| vb.append(out["output"]) | |
| xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) | |
| eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) | |
| mse.append(mean_flat((eps - noise) ** 2)) | |
| vb = th.stack(vb, dim=1) | |
| xstart_mse = th.stack(xstart_mse, dim=1) | |
| mse = th.stack(mse, dim=1) | |
| prior_bpd = self._prior_bpd(x_start) | |
| total_bpd = vb.sum(dim=1) + prior_bpd | |
| return { | |
| "total_bpd": total_bpd, | |
| "prior_bpd": prior_bpd, | |
| "vb": vb, | |
| "xstart_mse": xstart_mse, | |
| "mse": mse, | |
| } | |
| def scale_channels(self, x: th.Tensor) -> th.Tensor: | |
| if self.channel_scales is not None: | |
| x = x * th.from_numpy(self.channel_scales).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| if self.channel_biases is not None: | |
| x = x + th.from_numpy(self.channel_biases).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| return x | |
| def unscale_channels(self, x: th.Tensor) -> th.Tensor: | |
| if self.channel_biases is not None: | |
| x = x - th.from_numpy(self.channel_biases).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| if self.channel_scales is not None: | |
| x = x / th.from_numpy(self.channel_scales).to(x).reshape( | |
| [1, -1, *([1] * (len(x.shape) - 2))] | |
| ) | |
| return x | |
| def unscale_out_dict( | |
| self, out: Dict[str, Union[th.Tensor, Any]] | |
| ) -> Dict[str, Union[th.Tensor, Any]]: | |
| return { | |
| k: (self.unscale_channels(v) if isinstance(v, th.Tensor) else v) for k, v in out.items() | |
| } | |
| class SpacedDiffusion(GaussianDiffusion): | |
| """ | |
| A diffusion process which can skip steps in a base diffusion process. | |
| :param use_timesteps: (unordered) timesteps from the original diffusion | |
| process to retain. | |
| :param kwargs: the kwargs to create the base diffusion process. | |
| """ | |
| def __init__(self, use_timesteps: Iterable[int], **kwargs): | |
| self.use_timesteps = set(use_timesteps) | |
| self.timestep_map = [] | |
| self.original_num_steps = len(kwargs["betas"]) | |
| base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa | |
| last_alpha_cumprod = 1.0 | |
| new_betas = [] | |
| for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): | |
| if i in self.use_timesteps: | |
| new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) | |
| last_alpha_cumprod = alpha_cumprod | |
| self.timestep_map.append(i) | |
| kwargs["betas"] = np.array(new_betas) | |
| super().__init__(**kwargs) | |
| def p_mean_variance(self, model, *args, **kwargs): | |
| return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) | |
| def training_losses(self, model, *args, **kwargs): | |
| return super().training_losses(self._wrap_model(model), *args, **kwargs) | |
| def condition_mean(self, cond_fn, *args, **kwargs): | |
| return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) | |
| def condition_score(self, cond_fn, *args, **kwargs): | |
| return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) | |
| def _wrap_model(self, model): | |
| if isinstance(model, _WrappedModel): | |
| return model | |
| return _WrappedModel(model, self.timestep_map, self.original_num_steps) | |
| class _WrappedModel: | |
| def __init__(self, model, timestep_map, original_num_steps): | |
| self.model = model | |
| self.timestep_map = timestep_map | |
| self.original_num_steps = original_num_steps | |
| def __call__(self, x, ts, **kwargs): | |
| map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) | |
| new_ts = map_tensor[ts] | |
| return self.model(x, new_ts, **kwargs) | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res + th.zeros(broadcast_shape, device=timesteps.device) | |
| def normal_kl(mean1, logvar1, mean2, logvar2): | |
| """ | |
| Compute the KL divergence between two gaussians. | |
| Shapes are automatically broadcasted, so batches can be compared to | |
| scalars, among other use cases. | |
| """ | |
| tensor = None | |
| for obj in (mean1, logvar1, mean2, logvar2): | |
| if isinstance(obj, th.Tensor): | |
| tensor = obj | |
| break | |
| assert tensor is not None, "at least one argument must be a Tensor" | |
| # Force variances to be Tensors. Broadcasting helps convert scalars to | |
| # Tensors, but it does not work for th.exp(). | |
| logvar1, logvar2 = [ | |
| x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2) | |
| ] | |
| return 0.5 * ( | |
| -1.0 | |
| + logvar2 | |
| - logvar1 | |
| + th.exp(logvar1 - logvar2) | |
| + ((mean1 - mean2) ** 2) * th.exp(-logvar2) | |
| ) | |
| def approx_standard_normal_cdf(x): | |
| """ | |
| A fast approximation of the cumulative distribution function of the | |
| standard normal. | |
| """ | |
| return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) | |
| def discretized_gaussian_log_likelihood(x, *, means, log_scales): | |
| """ | |
| Compute the log-likelihood of a Gaussian distribution discretizing to a | |
| given image. | |
| :param x: the target images. It is assumed that this was uint8 values, | |
| rescaled to the range [-1, 1]. | |
| :param means: the Gaussian mean Tensor. | |
| :param log_scales: the Gaussian log stddev Tensor. | |
| :return: a tensor like x of log probabilities (in nats). | |
| """ | |
| assert x.shape == means.shape == log_scales.shape | |
| centered_x = x - means | |
| inv_stdv = th.exp(-log_scales) | |
| plus_in = inv_stdv * (centered_x + 1.0 / 255.0) | |
| cdf_plus = approx_standard_normal_cdf(plus_in) | |
| min_in = inv_stdv * (centered_x - 1.0 / 255.0) | |
| cdf_min = approx_standard_normal_cdf(min_in) | |
| log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) | |
| log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) | |
| cdf_delta = cdf_plus - cdf_min | |
| log_probs = th.where( | |
| x < -0.999, | |
| log_cdf_plus, | |
| th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), | |
| ) | |
| assert log_probs.shape == x.shape | |
| return log_probs | |
| def mean_flat(tensor): | |
| """ | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.flatten(1).mean(1) | |