Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Any, Dict, Optional | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| import numpy | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| import torch.distributed | |
| import transformers | |
| from collections import OrderedDict | |
| from PIL import Image | |
| from torchvision import transforms | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| randn_tensor = torch.randn | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDPMScheduler, | |
| DiffusionPipeline, | |
| EulerAncestralDiscreteScheduler, | |
| UNet2DConditionModel, | |
| ImagePipelineOutput, | |
| ) | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models.attention_processor import ( | |
| Attention, | |
| AttnProcessor, | |
| XFormersAttnProcessor, | |
| AttnProcessor2_0, | |
| ) | |
| from diffusers.utils.import_utils import is_xformers_available | |
| import spaces | |
| def extract_into_tensor(a, t, x_shape): | |
| b, *_ = t.shape | |
| out = a.gather(-1, t) | |
| return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
| def to_rgb_image(maybe_rgba: Image.Image): | |
| if maybe_rgba.mode == "RGB": | |
| return maybe_rgba | |
| elif maybe_rgba.mode == "RGBA": | |
| rgba = maybe_rgba | |
| img = numpy.random.randint( | |
| 255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8 | |
| ) | |
| img = Image.fromarray(img, "RGB") | |
| img.paste(rgba, mask=rgba.getchannel("A")) | |
| return img | |
| else: | |
| raise ValueError("Unsupported image type.", maybe_rgba.mode) | |
| class ReferenceOnlyAttnProc(torch.nn.Module): | |
| def __init__(self, chained_proc, enabled=False, name=None) -> None: | |
| super().__init__() | |
| self.enabled = enabled | |
| self.chained_proc = chained_proc | |
| self.name = name | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| mode="w", | |
| ref_dict: dict = None, | |
| is_cfg_guidance=False, | |
| ) -> Any: | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| if self.enabled and is_cfg_guidance: | |
| res0 = self.chained_proc( | |
| attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask | |
| ) | |
| hidden_states = hidden_states[1:] | |
| encoder_hidden_states = encoder_hidden_states[1:] | |
| if self.enabled: | |
| if mode == "w": | |
| ref_dict[self.name] = encoder_hidden_states | |
| elif mode == "r": | |
| encoder_hidden_states = torch.cat( | |
| [encoder_hidden_states, ref_dict.pop(self.name)], dim=1 | |
| ) | |
| elif mode == "m": | |
| encoder_hidden_states = torch.cat( | |
| [encoder_hidden_states, ref_dict[self.name]], dim=1 | |
| ) | |
| elif mode == "c": | |
| encoder_hidden_states = torch.cat( | |
| [encoder_hidden_states, encoder_hidden_states], dim=1 | |
| ) | |
| else: | |
| assert False, mode | |
| res = self.chained_proc( | |
| attn, hidden_states, encoder_hidden_states, attention_mask | |
| ) | |
| if self.enabled and is_cfg_guidance: | |
| res = torch.cat([res0, res]) | |
| return res | |
| class RefOnlyNoisedUNet(torch.nn.Module): | |
| def __init__( | |
| self, | |
| unet: UNet2DConditionModel, | |
| train_sched: DDPMScheduler, | |
| val_sched: EulerAncestralDiscreteScheduler, | |
| ) -> None: | |
| super().__init__() | |
| self.unet = unet | |
| self.train_sched = train_sched | |
| self.val_sched = val_sched | |
| unet_lora_attn_procs = dict() | |
| for name, _ in unet.attn_processors.items(): | |
| if torch.__version__ >= "2.0": | |
| default_attn_proc = AttnProcessor2_0() | |
| elif is_xformers_available(): | |
| default_attn_proc = XFormersAttnProcessor() | |
| else: | |
| default_attn_proc = AttnProcessor() | |
| unet_lora_attn_procs[name] = ReferenceOnlyAttnProc( | |
| default_attn_proc, enabled=name.endswith("attn1.processor"), name=name | |
| ) | |
| unet.set_attn_processor(unet_lora_attn_procs) | |
| def __getattr__(self, name: str): | |
| try: | |
| return super().__getattr__(name) | |
| except AttributeError: | |
| return getattr(self.unet, name) | |
| def forward_cond( | |
| self, | |
| noisy_cond_lat, | |
| timestep, | |
| encoder_hidden_states, | |
| class_labels, | |
| ref_dict, | |
| is_cfg_guidance, | |
| **kwargs, | |
| ): | |
| if is_cfg_guidance: | |
| encoder_hidden_states = encoder_hidden_states[1:] | |
| class_labels = class_labels[1:] | |
| self.unet( | |
| noisy_cond_lat, | |
| timestep, | |
| encoder_hidden_states=encoder_hidden_states, | |
| class_labels=class_labels, | |
| cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), | |
| **kwargs, | |
| ) | |
| def forward( | |
| self, | |
| sample, | |
| timestep, | |
| encoder_hidden_states, | |
| class_labels=None, | |
| *args, | |
| cross_attention_kwargs, | |
| down_block_res_samples=None, | |
| mid_block_res_sample=None, | |
| forward_cond_state=True, | |
| **kwargs, | |
| ): | |
| cond_lat = cross_attention_kwargs["cond_lat"] | |
| is_cfg_guidance = cross_attention_kwargs.get("is_cfg_guidance", False) | |
| noise = torch.randn_like(cond_lat) | |
| if self.training: | |
| noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) | |
| noisy_cond_lat = self.train_sched.scale_model_input( | |
| noisy_cond_lat, timestep | |
| ) | |
| else: | |
| noisy_cond_lat = self.val_sched.add_noise( | |
| cond_lat, noise, timestep.reshape(-1) | |
| ) | |
| noisy_cond_lat = self.val_sched.scale_model_input( | |
| noisy_cond_lat, timestep.reshape(-1) | |
| ) | |
| ref_dict = {} | |
| if "dont_forward_cond_state" not in cross_attention_kwargs.keys(): | |
| self.forward_cond( | |
| noisy_cond_lat, | |
| timestep, | |
| encoder_hidden_states, | |
| class_labels, | |
| ref_dict, | |
| is_cfg_guidance, | |
| **kwargs, | |
| ) | |
| mode = "r" | |
| else: | |
| mode = "c" | |
| weight_dtype = self.unet.dtype | |
| return self.unet( | |
| sample, | |
| timestep, | |
| encoder_hidden_states, | |
| *args, | |
| class_labels=class_labels, | |
| cross_attention_kwargs=dict( | |
| mode=mode, ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance | |
| ), | |
| down_block_additional_residuals=[ | |
| sample.to(dtype=weight_dtype) for sample in down_block_res_samples | |
| ] | |
| if down_block_res_samples is not None | |
| else None, | |
| mid_block_additional_residual=( | |
| mid_block_res_sample.to(dtype=weight_dtype) | |
| if mid_block_res_sample is not None | |
| else None | |
| ), | |
| **kwargs, | |
| ) | |
| def scale_latents(latents): | |
| latents = (latents - 0.22) * 0.75 | |
| return latents | |
| def unscale_latents(latents): | |
| latents = latents / 0.75 + 0.22 | |
| return latents | |
| def scale_image(image): | |
| image = image * 0.5 / 0.8 | |
| return image | |
| def unscale_image(image): | |
| image = image / 0.5 * 0.8 | |
| return image | |
| class DepthControlUNet(torch.nn.Module): | |
| def __init__( | |
| self, | |
| unet: RefOnlyNoisedUNet, | |
| controlnet: Optional[diffusers.ControlNetModel] = None, | |
| conditioning_scale=1.0, | |
| ) -> None: | |
| super().__init__() | |
| self.unet = unet | |
| if controlnet is None: | |
| self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet) | |
| else: | |
| self.controlnet = controlnet | |
| DefaultAttnProc = AttnProcessor2_0 | |
| if is_xformers_available(): | |
| DefaultAttnProc = XFormersAttnProcessor | |
| self.controlnet.set_attn_processor(DefaultAttnProc()) | |
| self.conditioning_scale = conditioning_scale | |
| def __getattr__(self, name: str): | |
| try: | |
| return super().__getattr__(name) | |
| except AttributeError: | |
| return getattr(self.unet, name) | |
| def forward( | |
| self, | |
| sample, | |
| timestep, | |
| encoder_hidden_states, | |
| class_labels=None, | |
| *args, | |
| cross_attention_kwargs: dict, | |
| **kwargs, | |
| ): | |
| cross_attention_kwargs = dict(cross_attention_kwargs) | |
| control_depth = cross_attention_kwargs.pop("control_depth") | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| sample, | |
| timestep, | |
| encoder_hidden_states=encoder_hidden_states, | |
| controlnet_cond=control_depth, | |
| conditioning_scale=self.conditioning_scale, | |
| return_dict=False, | |
| ) | |
| return self.unet( | |
| sample, | |
| timestep, | |
| encoder_hidden_states=encoder_hidden_states, | |
| down_block_res_samples=down_block_res_samples, | |
| mid_block_res_sample=mid_block_res_sample, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| class ModuleListDict(torch.nn.Module): | |
| def __init__(self, procs: dict) -> None: | |
| super().__init__() | |
| self.keys = sorted(procs.keys()) | |
| self.values = torch.nn.ModuleList(procs[k] for k in self.keys) | |
| def __getitem__(self, key): | |
| return self.values[self.keys.index(key)] | |
| class SuperNet(torch.nn.Module): | |
| def __init__(self, state_dict: Dict[str, torch.Tensor]): | |
| super().__init__() | |
| state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys())) | |
| self.layers = torch.nn.ModuleList(state_dict.values()) | |
| self.mapping = dict(enumerate(state_dict.keys())) | |
| self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} | |
| # .processor for unet, .self_attn for text encoder | |
| self.split_keys = [".processor", ".self_attn"] | |
| # we add a hook to state_dict() and load_state_dict() so that the | |
| # naming fits with `unet.attn_processors` | |
| def map_to(module, state_dict, *args, **kwargs): | |
| new_state_dict = {} | |
| for key, value in state_dict.items(): | |
| num = int(key.split(".")[1]) # 0 is always "layers" | |
| new_key = key.replace(f"layers.{num}", module.mapping[num]) | |
| new_state_dict[new_key] = value | |
| return new_state_dict | |
| def remap_key(key, state_dict): | |
| for k in self.split_keys: | |
| if k in key: | |
| return key.split(k)[0] + k | |
| return key.split(".")[0] | |
| def map_from(module, state_dict, *args, **kwargs): | |
| all_keys = list(state_dict.keys()) | |
| for key in all_keys: | |
| replace_key = remap_key(key, state_dict) | |
| new_key = key.replace( | |
| replace_key, f"layers.{module.rev_mapping[replace_key]}" | |
| ) | |
| state_dict[new_key] = state_dict[key] | |
| del state_dict[key] | |
| self._register_state_dict_hook(map_to) | |
| self._register_load_state_dict_pre_hook(map_from, with_module=True) | |
| class Zero123PlusPipeline(diffusers.StableDiffusionPipeline): | |
| tokenizer: transformers.CLIPTokenizer | |
| text_encoder: transformers.CLIPTextModel | |
| vision_encoder: transformers.CLIPVisionModelWithProjection | |
| feature_extractor_clip: transformers.CLIPImageProcessor | |
| unet: UNet2DConditionModel | |
| scheduler: diffusers.schedulers.KarrasDiffusionSchedulers | |
| vae: AutoencoderKL | |
| ramping: nn.Linear | |
| feature_extractor_vae: transformers.CLIPImageProcessor | |
| depth_transforms_multi = transforms.Compose( | |
| [transforms.ToTensor(), transforms.Normalize([0.5], [0.5])] | |
| ) | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| vision_encoder: transformers.CLIPVisionModelWithProjection, | |
| feature_extractor_clip: CLIPImageProcessor, | |
| feature_extractor_vae: CLIPImageProcessor, | |
| ramping_coefficients: Optional[list] = None, | |
| safety_checker=None, | |
| ): | |
| DiffusionPipeline.__init__(self) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=None, | |
| vision_encoder=vision_encoder, | |
| feature_extractor_clip=feature_extractor_clip, | |
| feature_extractor_vae=feature_extractor_vae, | |
| ) | |
| self.register_to_config(ramping_coefficients=ramping_coefficients) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def prepare(self): | |
| train_sched = DDPMScheduler.from_config(self.scheduler.config) | |
| if isinstance(self.unet, UNet2DConditionModel): | |
| self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval() | |
| def add_controlnet( | |
| self, | |
| controlnet: Optional[diffusers.ControlNetModel] = None, | |
| conditioning_scale=1.0, | |
| ): | |
| self.prepare() | |
| self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale) | |
| return SuperNet(OrderedDict([("controlnet", self.unet.controlnet)])) | |
| def encode_condition_image(self, image: torch.Tensor): | |
| image = self.vae.encode(image).latent_dist.sample() | |
| return image | |
| def edit_latents( | |
| self, | |
| image_guidance: Image.Image, | |
| multiview_source_image: Image.Image = None, | |
| edit_strength: float = 1.0, | |
| prompt="", | |
| *args, | |
| guidance_scale=0.0, | |
| output_type: Optional[str] = "pil", | |
| width=640, | |
| height=960, | |
| num_inference_steps=28, | |
| return_dict=True, | |
| **kwargs, | |
| ): | |
| self.prepare() | |
| if image_guidance is None: | |
| raise ValueError( | |
| "Inputting embeddings not supported for this pipeline. Please pass an image." | |
| ) | |
| if multiview_source_image is None: | |
| raise ValueError("Multiview source image is required for this pipeline.") | |
| assert not isinstance(image_guidance, torch.Tensor) | |
| assert not isinstance(multiview_source_image, torch.Tensor) | |
| image_guidance = to_rgb_image(image_guidance) | |
| image_source = to_rgb_image(multiview_source_image) | |
| image_guidance_1 = self.feature_extractor_vae( | |
| images=image_guidance, return_tensors="pt" | |
| ).pixel_values | |
| image_guidance_2 = self.feature_extractor_clip( | |
| images=image_source, return_tensors="pt" | |
| ).pixel_values | |
| image_guidance = image_guidance_1.to( | |
| device=self.vae.device, dtype=self.vae.dtype | |
| ) | |
| image_guidance_2 = image_guidance_2.to( | |
| device=self.vae.device, dtype=self.vae.dtype | |
| ) | |
| cond_lat = self.encode_condition_image(image_guidance) | |
| # if guidance_scale > 1: | |
| negative_lat = self.encode_condition_image(torch.zeros_like(image_guidance)) | |
| cond_lat = torch.cat([negative_lat, cond_lat]) | |
| encoded = self.vision_encoder(image_guidance_2, output_hidden_states=False) | |
| global_embeds = encoded.image_embeds | |
| global_embeds = global_embeds.unsqueeze(-2) | |
| if hasattr(self, "encode_prompt"): | |
| encoder_hidden_states = self.encode_prompt(prompt, self.device, 1, False)[0] | |
| else: | |
| encoder_hidden_states = self._encode_prompt(prompt, self.device, 1, False) | |
| ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
| encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
| cak = dict(cond_lat=cond_lat) | |
| mv_image = ( | |
| torch.from_numpy(numpy.array(multiview_source_image)).to(self.vae.device) | |
| / 255.0 | |
| ) | |
| mv_image = ( | |
| mv_image.permute(2, 0, 1) | |
| .to(self.vae.device) | |
| .to(self.vae.dtype) | |
| .unsqueeze(0) | |
| ) | |
| latents = ( | |
| self.vae.encode(mv_image * 2.0 - 1.0).latent_dist.sample() | |
| * self.vae.config.scaling_factor | |
| ) | |
| latents: torch.Tensor = ( | |
| super() | |
| .__call__( | |
| None, | |
| *args, | |
| cross_attention_kwargs=cak, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| prompt_embeds=encoder_hidden_states, | |
| num_inference_steps=num_inference_steps, | |
| output_type="latent", | |
| width=width, | |
| height=height, | |
| latents=latents, | |
| edit_strength=edit_strength, | |
| **kwargs, | |
| ) | |
| .images | |
| ) | |
| latents = unscale_latents(latents) | |
| if not output_type == "latent": | |
| image = unscale_image( | |
| self.vae.decode( | |
| latents / self.vae.config.scaling_factor, return_dict=False | |
| )[0] | |
| ) | |
| else: | |
| image = latents | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |
| def encode_target_images(self, images): | |
| dtype = next(self.vae.parameters()).dtype | |
| # equals to scaling images to [-1, 1] first and then call scale_image | |
| images = (images - 0.5) / 0.8 # [-0.625, 0.625] | |
| posterior = self.vae.encode(images.to(dtype)).latent_dist | |
| latents = posterior.sample() * self.vae.config.scaling_factor | |
| latents = scale_latents(latents) | |
| return latents | |
| def sdedit( | |
| self, | |
| image, | |
| *args, | |
| cond_image: Image.Image = None, | |
| output_type: Optional[str] = "pil", | |
| width=640, | |
| height=960, | |
| num_inference_steps=75, | |
| edit_strength=1.0, | |
| return_dict=True, | |
| guidance_scale=0.0, | |
| **kwargs, | |
| ): | |
| self.prepare() | |
| if image is None: | |
| raise ValueError( | |
| "Inputting embeddings not supported for this pipeline. Please pass an image." | |
| ) | |
| assert not isinstance(image, torch.Tensor) | |
| image = to_rgb_image(image) | |
| # cond_lat = self.encode_condition_image(image_guidance) | |
| if hasattr(self, "encode_prompt"): | |
| encoder_hidden_states = self.encode_prompt([""], self.device, 1, False)[0] | |
| else: | |
| encoder_hidden_states = self._encode_prompt([""], self.device, 1, False) | |
| # negative_lat = self.encode_condition_image(torch.zeros_like(image_guidance)) | |
| # cond_lat = torch.cat([negative_lat, cond_lat]) | |
| # encoded = self.vision_encoder(image_guidance_2, output_hidden_states=False) | |
| # global_embeds = encoded.image_embeds | |
| # global_embeds = global_embeds.unsqueeze(-2) | |
| # prompt = "" | |
| # ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
| # encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
| # cak = dict(cond_lat=cond_lat) | |
| image = torch.from_numpy(numpy.array(image)).to(self.vae.device) / 255.0 | |
| image = image.permute(2, 0, 1).unsqueeze(0) | |
| if self.vae.dtype == torch.float16: | |
| image = image.half() | |
| # image = image.permute(2, 0, 1).to(self.vae.device).to(self.vae.dtype).unsqueeze(0) | |
| latents = self.encode_target_images(image) | |
| if cond_image is not None: | |
| cond_image = to_rgb_image(cond_image) | |
| cond_image = ( | |
| torch.from_numpy(numpy.array(cond_image)).to(self.vae.device) / 255.0 | |
| ) | |
| cond_image = cond_image.permute(2, 0, 1).unsqueeze(0) | |
| if self.vae.dtype == torch.float16: | |
| cond_image = cond_image.half() | |
| cond_lat = self.encode_condition_image(cond_image) | |
| else: | |
| cond_lat = self.encode_condition_image(torch.zeros_like(image)).to( | |
| self.vae.device | |
| ) | |
| cak = dict(cond_lat=cond_lat, dont_forward_cond_state=True) | |
| latents = self.forward_sdedit( | |
| latents, | |
| cross_attention_kwargs=cak, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| prompt_embeds=encoder_hidden_states, | |
| num_inference_steps=num_inference_steps, | |
| output_type="latent", | |
| width=width, | |
| height=height, | |
| edit_strength=edit_strength, | |
| **kwargs, | |
| ).images | |
| # latents = unscale_latents(latents) | |
| if not output_type == "latent": | |
| image = unscale_image( | |
| self.vae.decode( | |
| latents / self.vae.config.scaling_factor, return_dict=False | |
| )[0] | |
| ) | |
| else: | |
| image = latents | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |
| def refine( | |
| self, | |
| image: Image.Image = None, | |
| edit_image: Image.Image = None, | |
| prompt: Optional[str] = "", | |
| *args, | |
| output_type: Optional[str] = "pil", | |
| width=640, | |
| height=960, | |
| num_inference_steps=28, | |
| edit_strength=1.0, | |
| return_dict=True, | |
| guidance_scale=4.0, | |
| **kwargs, | |
| ): | |
| self.prepare() | |
| if image is None: | |
| raise ValueError( | |
| "Inputting embeddings not supported for this pipeline. Please pass an image." | |
| ) | |
| assert not isinstance(image, torch.Tensor) | |
| image = to_rgb_image(image) | |
| # cond_lat = self.encode_condition_image(image_guidance) | |
| if hasattr(self, "encode_prompt"): | |
| encoder_hidden_states = self.encode_prompt(prompt, self.device, 1, False)[0] | |
| else: | |
| encoder_hidden_states = self._encode_prompt(prompt, self.device, 1, False) | |
| # negative_lat = self.encode_condition_image(torch.zeros_like(image_guidance)) | |
| # cond_lat = torch.cat([negative_lat, cond_lat]) | |
| # encoded = self.vision_encoder(image_guidance_2, output_hidden_states=False) | |
| # global_embeds = encoded.image_embeds | |
| # global_embeds = global_embeds.unsqueeze(-2) | |
| # prompt = "" | |
| # ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
| # encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
| # cak = dict(cond_lat=cond_lat) | |
| latents_edit = None | |
| if edit_image is not None: | |
| edit_image = to_rgb_image(edit_image) | |
| edit_image = ( | |
| torch.from_numpy(numpy.array(edit_image)).to(self.vae.device) / 255.0 | |
| ) | |
| edit_image = edit_image.permute(2, 0, 1).unsqueeze(0) | |
| if self.vae.dtype == torch.float16: | |
| edit_image = edit_image.half() | |
| latents_edit = self.encode_target_images(edit_image) | |
| image = torch.from_numpy(numpy.array(image)).to(self.vae.device) / 255.0 | |
| image = image.permute(2, 0, 1).unsqueeze(0) | |
| if self.vae.dtype == torch.float16: | |
| image = image.half() | |
| # image = torch.nn.functional.interpolate( | |
| # image, (height*4, width*4), mode="bilinear", align_corners=False) | |
| # image = image[...,:320,:320] | |
| height, width = image.shape[-2:] | |
| # image = image[...,:640,:] | |
| # image[...,:320,:] = torch.ones_like(image[...,:320,:]) | |
| # image = image.permute(2, 0, 1).to(self.vae.device).to(self.vae.dtype).unsqueeze(0) | |
| # height = height * 4 | |
| # width = width * 4 | |
| latents = self.encode_target_images(image) | |
| # latents[...,-40:,:] = torch.randn_like(latents[...,-40:,:]) | |
| cond_lat = self.encode_condition_image(torch.zeros_like(image)).to( | |
| self.vae.device | |
| ) | |
| cak = dict(cond_lat=cond_lat, dont_forward_cond_state=True) | |
| latents = self.forward_pipeline( | |
| latents_edit, | |
| latents, | |
| cross_attention_kwargs=cak, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| prompt_embeds=encoder_hidden_states, | |
| num_inference_steps=num_inference_steps, | |
| output_type="latent", | |
| width=width, | |
| height=height, | |
| edit_strength=edit_strength, | |
| **kwargs, | |
| ).images | |
| # latents = unscale_latents(latents) | |
| if not output_type == "latent": | |
| image = unscale_image( | |
| self.vae.decode( | |
| latents / self.vae.config.scaling_factor, return_dict=False | |
| )[0] | |
| ) | |
| else: | |
| image = latents | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| timestep=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor( | |
| shape, generator=generator, device=device, dtype=dtype | |
| ) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| else: | |
| if timestep is None: | |
| raise ValueError( | |
| "When passing `latents` you also need to pass `timestep`." | |
| ) | |
| latents = latents.to(device) | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| latents = self.scheduler.add_noise(latents, noise, timestep) | |
| return latents | |
| def forward_sdedit( | |
| self, | |
| latents: torch.Tensor, | |
| cross_attention_kwargs: dict, | |
| guidance_scale: float, | |
| num_images_per_prompt: int, | |
| prompt_embeds, | |
| num_inference_steps: int, | |
| output_type: str, | |
| width: int, | |
| height: int, | |
| edit_strength: float = 1.0, | |
| ): | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| batch_size = prompt_embeds.shape[0] | |
| generator = torch.Generator(device=latents.device) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) | |
| if cross_attention_kwargs is not None | |
| else None | |
| ) | |
| prompt_embeds = self._encode_prompt( | |
| None, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| None, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=None, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| # self.scheduler.timesteps = self.scheduler.timesteps | |
| timesteps = self.scheduler.timesteps | |
| timesteps = reversed(reversed(timesteps)[: int(edit_strength * len(timesteps))]) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| timesteps[0:1], | |
| ) | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) | |
| # if do_classifier_free_guidance: | |
| # cond_latent = cond_latent.expand(batch_size * 2, -1, -1, -1) | |
| # 7. Denoising loop | |
| num_warmup_steps = 0 | |
| with self.progress_bar(total=len(timesteps)) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # latent_model_input = | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # exit(0)/ | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
| )[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| latents = unscale_latents(latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode( | |
| latents / self.vae.config.scaling_factor, return_dict=False | |
| )[0] | |
| image, has_nsfw_concept = self.run_safety_checker( | |
| image, device, prompt_embeds.dtype | |
| ) | |
| else: | |
| image = latents | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=has_nsfw_concept | |
| ) | |
| def forward_pipeline( | |
| self, | |
| latents: torch.Tensor, | |
| cond_latent: torch.Tensor, | |
| cross_attention_kwargs: dict, | |
| guidance_scale: float, | |
| num_images_per_prompt: int, | |
| prompt_embeds, | |
| num_inference_steps: int, | |
| output_type: str, | |
| width: int, | |
| height: int, | |
| edit_strength: float = 1.0, | |
| ): | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| batch_size = 1 | |
| generator = torch.Generator(device=cond_latent.device) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) | |
| if cross_attention_kwargs is not None | |
| else None | |
| ) | |
| prompt_embeds = self._encode_prompt( | |
| None, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| None, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=None, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| # self.scheduler.timesteps = self.scheduler.timesteps | |
| timesteps = self.scheduler.timesteps | |
| timesteps = reversed(reversed(timesteps)[: int(edit_strength * len(timesteps))]) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels // 2 | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| timesteps[0:1], | |
| ) | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) | |
| if do_classifier_free_guidance: | |
| cond_latent = cond_latent.expand(batch_size * 2, -1, -1, -1) | |
| # 7. Denoising loop | |
| num_warmup_steps = 0 | |
| with self.progress_bar(total=len(timesteps)) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| latent_model_input = torch.cat([latent_model_input, cond_latent], dim=1) | |
| # latent_model_input = latent_model_input.half() | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
| )[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| latents = unscale_latents(latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode( | |
| latents / self.vae.config.scaling_factor, return_dict=False | |
| )[0] | |
| image, has_nsfw_concept = self.run_safety_checker( | |
| image, device, prompt_embeds.dtype | |
| ) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=has_nsfw_concept | |
| ) | |
| def __call__( | |
| self, | |
| image: Image.Image = None, | |
| source_image: Image.Image = None, | |
| prompt="", | |
| *args, | |
| num_images_per_prompt: Optional[int] = 1, | |
| guidance_scale=4.0, | |
| depth_image: Image.Image = None, | |
| output_type: Optional[str] = "pil", | |
| width=640, | |
| height=960, | |
| num_inference_steps=28, | |
| return_dict=True, | |
| **kwargs, | |
| ): | |
| self.prepare() | |
| if image is None: | |
| raise ValueError( | |
| "Inputting embeddings not supported for this pipeline. Please pass an image." | |
| ) | |
| assert not isinstance(image, torch.Tensor) | |
| image = to_rgb_image(image) | |
| image_1 = self.feature_extractor_vae( | |
| images=image, return_tensors="pt" | |
| ).pixel_values | |
| image_2 = self.feature_extractor_clip( | |
| images=image, return_tensors="pt" | |
| ).pixel_values | |
| # image_source = to_rgb_image(source_image) | |
| # image_source_latents = self.feature_extractor_vae(images=image_source, return_tensors="pt") | |
| if depth_image is not None and hasattr(self.unet, "controlnet"): | |
| depth_image = to_rgb_image(depth_image) | |
| depth_image = self.depth_transforms_multi(depth_image).to( | |
| device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype | |
| ) | |
| image = image_1.to(device=self.vae.device, dtype=self.vae.dtype) | |
| image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) | |
| cond_lat = self.encode_condition_image(image) | |
| if guidance_scale > 1: | |
| negative_lat = self.encode_condition_image(torch.zeros_like(image)) | |
| cond_lat = torch.cat([negative_lat, cond_lat]) | |
| encoded = self.vision_encoder(image_2, output_hidden_states=False) | |
| global_embeds = encoded.image_embeds | |
| global_embeds = global_embeds.unsqueeze(-2) | |
| if hasattr(self, "encode_prompt"): | |
| encoder_hidden_states = self.encode_prompt( | |
| prompt, self.device, num_images_per_prompt, False | |
| )[0] | |
| else: | |
| encoder_hidden_states = self._encode_prompt( | |
| prompt, self.device, num_images_per_prompt, False | |
| ) | |
| ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
| encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
| cak = dict(cond_lat=cond_lat) | |
| if hasattr(self.unet, "controlnet"): | |
| cak["control_depth"] = depth_image | |
| latents: torch.Tensor = ( | |
| super() | |
| .__call__( | |
| None, | |
| *args, | |
| cross_attention_kwargs=cak, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=num_images_per_prompt, | |
| prompt_embeds=encoder_hidden_states, | |
| num_inference_steps=num_inference_steps, | |
| output_type="latent", | |
| width=width, | |
| height=height, | |
| latents=None, | |
| **kwargs, | |
| ) | |
| .images | |
| ) | |
| latents = unscale_latents(latents) | |
| if not output_type == "latent": | |
| image = unscale_image( | |
| self.vae.decode( | |
| latents / self.vae.config.scaling_factor, return_dict=False | |
| )[0] | |
| ) | |
| else: | |
| image = latents | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |