Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5c79851
1
Parent(s):
0820934
updated
Browse files- torch_patch.py +66 -0
torch_patch.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Patch for torch module to make it compatible with newer diffusers versions
|
| 3 |
+
while using PyTorch 2.0.1
|
| 4 |
+
"""
|
| 5 |
+
import torch
|
| 6 |
+
import sys
|
| 7 |
+
import warnings
|
| 8 |
+
import types
|
| 9 |
+
import functools
|
| 10 |
+
|
| 11 |
+
# Check if the attributes already exist
|
| 12 |
+
if not hasattr(torch, 'float8_e4m3fn'):
|
| 13 |
+
# Add missing attributes for compatibility
|
| 14 |
+
# These won't actually function, but they'll allow imports to succeed
|
| 15 |
+
torch.float8_e4m3fn = torch.float16 # Use float16 as a placeholder type
|
| 16 |
+
warnings.warn(
|
| 17 |
+
"Added placeholder for torch.float8_e4m3fn. Actual 8-bit operations won't work, "
|
| 18 |
+
"but imports should succeed. Using PyTorch 2.0.1 with newer diffusers."
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
if not hasattr(torch, 'float8_e5m2'):
|
| 22 |
+
torch.float8_e5m2 = torch.float16 # Use float16 as a placeholder type
|
| 23 |
+
|
| 24 |
+
# Add other missing torch types that might be referenced
|
| 25 |
+
for type_name in ['bfloat16', 'bfloat8', 'float8_e4m3fnuz']:
|
| 26 |
+
if not hasattr(torch, type_name):
|
| 27 |
+
setattr(torch, type_name, torch.float16)
|
| 28 |
+
|
| 29 |
+
# Create a placeholder for torch._dynamo if it doesn't exist
|
| 30 |
+
if not hasattr(torch, '_dynamo'):
|
| 31 |
+
torch._dynamo = types.ModuleType('torch._dynamo')
|
| 32 |
+
sys.modules['torch._dynamo'] = torch._dynamo
|
| 33 |
+
|
| 34 |
+
# Add common attributes/functions used by torch._dynamo
|
| 35 |
+
torch._dynamo.config = types.SimpleNamespace(suppress_errors=True)
|
| 36 |
+
torch._dynamo.optimize = lambda *args, **kwargs: lambda f: f
|
| 37 |
+
torch._dynamo.disable = lambda: None
|
| 38 |
+
torch._dynamo.reset_repro_cache = lambda: None
|
| 39 |
+
|
| 40 |
+
# Add torch.compile if it doesn't exist
|
| 41 |
+
if not hasattr(torch, 'compile'):
|
| 42 |
+
# Just return the function unchanged
|
| 43 |
+
torch.compile = lambda fn, **kwargs: fn
|
| 44 |
+
|
| 45 |
+
# Create a placeholder for torch.cuda.amp if it doesn't exist
|
| 46 |
+
if not hasattr(torch.cuda, 'amp'):
|
| 47 |
+
torch.cuda.amp = types.ModuleType('torch.cuda.amp')
|
| 48 |
+
sys.modules['torch.cuda.amp'] = torch.cuda.amp
|
| 49 |
+
|
| 50 |
+
# Mock autocast
|
| 51 |
+
class MockAutocast:
|
| 52 |
+
def __init__(self, *args, **kwargs):
|
| 53 |
+
pass
|
| 54 |
+
def __enter__(self):
|
| 55 |
+
return self
|
| 56 |
+
def __exit__(self, *args):
|
| 57 |
+
pass
|
| 58 |
+
def __call__(self, func):
|
| 59 |
+
@functools.wraps(func)
|
| 60 |
+
def wrapper(*args, **kwargs):
|
| 61 |
+
return func(*args, **kwargs)
|
| 62 |
+
return wrapper
|
| 63 |
+
|
| 64 |
+
torch.cuda.amp.autocast = MockAutocast
|
| 65 |
+
|
| 66 |
+
print("PyTorch patched for compatibility with newer diffusers - using latest diffusers with PyTorch 2.0.1")
|