File size: 7,407 Bytes
63ee3e5
 
 
 
d744aff
 
63ee3e5
d744aff
 
 
63ee3e5
 
35bcda1
63ee3e5
 
d744aff
 
 
63ee3e5
 
 
c098e72
63ee3e5
 
c7f56a8
 
 
c098e72
c7f56a8
 
d744aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63ee3e5
 
d744aff
 
 
63ee3e5
d744aff
63ee3e5
d744aff
 
 
 
 
 
 
 
c7f56a8
d744aff
63ee3e5
 
d744aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f56a8
d744aff
 
 
 
 
 
 
 
 
 
 
 
 
c7f56a8
d744aff
 
 
 
63ee3e5
d744aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63ee3e5
d744aff
 
 
 
 
 
 
c7f56a8
63ee3e5
 
 
d744aff
 
63ee3e5
 
d744aff
 
63ee3e5
 
d744aff
 
63ee3e5
 
d744aff
 
 
63ee3e5
 
 
 
d744aff
63ee3e5
c7f56a8
 
 
 
 
 
d744aff
c7f56a8
d744aff
c7f56a8
 
63ee3e5
d744aff
63ee3e5
d744aff
 
 
63ee3e5
 
 
 
 
d744aff
63ee3e5
 
 
 
 
 
d744aff
63ee3e5
d744aff
 
 
 
 
 
63ee3e5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import torch
import numpy as np
import librosa
from transformers import pipeline, VitsModel, AutoTokenizer
import scipy  # if needed for processing

# -----------------------------------------------
# 1. ASR Pipeline (English)
# -----------------------------------------------
asr = pipeline(
    "automatic-speech-recognition",
    model="facebook/wav2vec2-base-960h"
)

# -----------------------------------------------
# 2. Translation Models (3 languages)
# -----------------------------------------------
translation_models = {
    "Spanish": "Helsinki-NLP/opus-mt-en-es",
    "Chinese": "Helsinki-NLP/opus-mt-en-zh",
    "Japanese": "Helsinki-NLP/opus-mt-en-ja"
}

translation_tasks = {
    "Spanish": "translation_en_to_es",
    "Chinese": "translation_en_to_zh",
    "Japanese": "translation_en_to_ja"
}

# -----------------------------------------------
# 3. TTS Model Configurations
#    We'll load them manually (not with pipeline("text-to-speech"))
# -----------------------------------------------
# - Spanish (MMS TTS, uses VITS architecture)
# - Chinese (MMS TTS, uses VITS architecture)
# - Japanese (SpeechT5 or a VITS-based model—here we pick a SpeechT5 example)
tts_config = {
    "Spanish": {
        "model_id": "facebook/mms-tts-spa",
        "architecture": "vits"  # We'll use VitsModel
    },
    "Chinese": {
        "model_id": "facebook/mms-tts-che",
        "architecture": "vits"
    },
    "Japanese": {
        "model_id": "esnya/japanese_speecht5_tts",
        "architecture": "speecht5"  # We'll treat this differently
    }
}

# -----------------------------------------------
# 4. Caches
# -----------------------------------------------
translator_cache = {}
tts_model_cache = {}  # store (model, tokenizer, architecture)

# -----------------------------------------------
# 5. Translator Helper
# -----------------------------------------------
def get_translator(lang):
    if lang in translator_cache:
        return translator_cache[lang]
    model_name = translation_models[lang]
    task_name = translation_tasks[lang]
    translator = pipeline(task_name, model=model_name)
    translator_cache[lang] = translator
    return translator

# -----------------------------------------------
# 6. TTS Helper
# -----------------------------------------------
def get_tts_model(lang):
    """
    Loads (model, tokenizer, architecture) from Hugging Face once, then caches.
    """
    if lang in tts_model_cache:
        return tts_model_cache[lang]
    
    config = tts_config.get(lang)
    if config is None:
        raise ValueError(f"No TTS config found for language: {lang}")
    
    model_id = config["model_id"]
    arch = config["architecture"]
    
    try:
        if arch == "vits":
            # Load a VitsModel + tokenizer
            model = VitsModel.from_pretrained(model_id)
            tokenizer = AutoTokenizer.from_pretrained(model_id)
        elif arch == "speecht5":
            # For a SpeechT5 model, we might do something else
            # e.g., pipeline("text-to-speech", model=...) if it works
            # or custom loading if it's also a VITS-based approach
            # We'll attempt a similar pattern:
            model = VitsModel.from_pretrained(model_id)
            tokenizer = AutoTokenizer.from_pretrained(model_id)
        else:
            raise ValueError(f"Unknown TTS architecture: {arch}")
    except Exception as e:
        raise RuntimeError(f"Failed to load TTS model {model_id}: {e}")
    
    tts_model_cache[lang] = (model, tokenizer, arch)
    return tts_model_cache[lang]

def run_tts_inference(lang, text):
    """
    Generates waveform using the loaded TTS model and tokenizer.
    Returns (sample_rate, np_array).
    """
    model, tokenizer, arch = get_tts_model(lang)
    inputs = tokenizer(text, return_tensors="pt")
    
    with torch.no_grad():
        output = model(**inputs)
    
    # VitsModel output is typically `.waveform`
    if hasattr(output, "waveform"):
        waveform_tensor = output.waveform
    else:
        # Some models might return a different attribute
        raise RuntimeError("The TTS model output doesn't have 'waveform' attribute.")
    
    # Convert to numpy array
    waveform = waveform_tensor.squeeze().cpu().numpy()
    
    # Typically, MMS TTS uses 16 kHz
    sample_rate = 16000
    return (sample_rate, waveform)

# -----------------------------------------------
# 7. Prediction Function
# -----------------------------------------------
def predict(audio, text, target_language):
    """
    1. If text is provided, use it directly as English text.
       Else, if audio is provided, run ASR.
    2. Translate English -> target_language.
    3. Run TTS with the correct approach for that language.
    """
    # Step 1: English text
    if text.strip():
        english_text = text.strip()
    elif audio is not None:
        sample_rate, audio_data = audio
        
        # Convert to float32
        if audio_data.dtype not in [np.float32, np.float64]:
            audio_data = audio_data.astype(np.float32)
        
        # Mono
        if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
            audio_data = np.mean(audio_data, axis=1)
        
        # Resample to 16k
        if sample_rate != 16000:
            audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
        
        asr_input = {"array": audio_data, "sampling_rate": 16000}
        asr_result = asr(asr_input)
        english_text = asr_result["text"]
    else:
        return "No input provided.", "", None

    # Step 2: Translation
    translator = get_translator(target_language)
    try:
        translation_result = translator(english_text)
        translated_text = translation_result[0]["translation_text"]
    except Exception as e:
        return english_text, f"Translation error: {e}", None

    # Step 3: TTS
    try:
        sample_rate, waveform = run_tts_inference(target_language, translated_text)
    except Exception as e:
        return english_text, translated_text, f"TTS error: {e}"

    return english_text, translated_text, (sample_rate, waveform)

# -----------------------------------------------
# 8. Gradio Interface
# -----------------------------------------------
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
        gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
        gr.Dropdown(choices=["Spanish", "Chinese", "Japanese"], value="Spanish", label="Target Language")
    ],
    outputs=[
        gr.Textbox(label="English Transcription"),
        gr.Textbox(label="Translation (Target Language)"),
        gr.Audio(label="Synthesized Speech in Target Language")
    ],
    title="Multimodal Language Learning Aid (VITS-based TTS)",
    description=(
        "This app:\n"
        "1. Transcribes English speech (via ASR) or accepts English text.\n"
        "2. Translates to Spanish, Chinese, or Japanese.\n"
        "3. Synthesizes speech with VITS-based or SpeechT5-based models.\n\n"
        "Note: Some models are experimental and may produce errors or poor quality.\n"
        "Either upload/record English audio or enter text, then select a target language."
    ),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()