File size: 7,407 Bytes
63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 35bcda1 63ee3e5 d744aff 63ee3e5 c098e72 63ee3e5 c7f56a8 c098e72 c7f56a8 d744aff 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 d744aff c7f56a8 d744aff 63ee3e5 d744aff c7f56a8 d744aff c7f56a8 d744aff 63ee3e5 d744aff 63ee3e5 d744aff c7f56a8 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 c7f56a8 d744aff c7f56a8 d744aff c7f56a8 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import torch
import numpy as np
import librosa
from transformers import pipeline, VitsModel, AutoTokenizer
import scipy # if needed for processing
# -----------------------------------------------
# 1. ASR Pipeline (English)
# -----------------------------------------------
asr = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-base-960h"
)
# -----------------------------------------------
# 2. Translation Models (3 languages)
# -----------------------------------------------
translation_models = {
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
}
translation_tasks = {
"Spanish": "translation_en_to_es",
"Chinese": "translation_en_to_zh",
"Japanese": "translation_en_to_ja"
}
# -----------------------------------------------
# 3. TTS Model Configurations
# We'll load them manually (not with pipeline("text-to-speech"))
# -----------------------------------------------
# - Spanish (MMS TTS, uses VITS architecture)
# - Chinese (MMS TTS, uses VITS architecture)
# - Japanese (SpeechT5 or a VITS-based model—here we pick a SpeechT5 example)
tts_config = {
"Spanish": {
"model_id": "facebook/mms-tts-spa",
"architecture": "vits" # We'll use VitsModel
},
"Chinese": {
"model_id": "facebook/mms-tts-che",
"architecture": "vits"
},
"Japanese": {
"model_id": "esnya/japanese_speecht5_tts",
"architecture": "speecht5" # We'll treat this differently
}
}
# -----------------------------------------------
# 4. Caches
# -----------------------------------------------
translator_cache = {}
tts_model_cache = {} # store (model, tokenizer, architecture)
# -----------------------------------------------
# 5. Translator Helper
# -----------------------------------------------
def get_translator(lang):
if lang in translator_cache:
return translator_cache[lang]
model_name = translation_models[lang]
task_name = translation_tasks[lang]
translator = pipeline(task_name, model=model_name)
translator_cache[lang] = translator
return translator
# -----------------------------------------------
# 6. TTS Helper
# -----------------------------------------------
def get_tts_model(lang):
"""
Loads (model, tokenizer, architecture) from Hugging Face once, then caches.
"""
if lang in tts_model_cache:
return tts_model_cache[lang]
config = tts_config.get(lang)
if config is None:
raise ValueError(f"No TTS config found for language: {lang}")
model_id = config["model_id"]
arch = config["architecture"]
try:
if arch == "vits":
# Load a VitsModel + tokenizer
model = VitsModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
elif arch == "speecht5":
# For a SpeechT5 model, we might do something else
# e.g., pipeline("text-to-speech", model=...) if it works
# or custom loading if it's also a VITS-based approach
# We'll attempt a similar pattern:
model = VitsModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
else:
raise ValueError(f"Unknown TTS architecture: {arch}")
except Exception as e:
raise RuntimeError(f"Failed to load TTS model {model_id}: {e}")
tts_model_cache[lang] = (model, tokenizer, arch)
return tts_model_cache[lang]
def run_tts_inference(lang, text):
"""
Generates waveform using the loaded TTS model and tokenizer.
Returns (sample_rate, np_array).
"""
model, tokenizer, arch = get_tts_model(lang)
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
# VitsModel output is typically `.waveform`
if hasattr(output, "waveform"):
waveform_tensor = output.waveform
else:
# Some models might return a different attribute
raise RuntimeError("The TTS model output doesn't have 'waveform' attribute.")
# Convert to numpy array
waveform = waveform_tensor.squeeze().cpu().numpy()
# Typically, MMS TTS uses 16 kHz
sample_rate = 16000
return (sample_rate, waveform)
# -----------------------------------------------
# 7. Prediction Function
# -----------------------------------------------
def predict(audio, text, target_language):
"""
1. If text is provided, use it directly as English text.
Else, if audio is provided, run ASR.
2. Translate English -> target_language.
3. Run TTS with the correct approach for that language.
"""
# Step 1: English text
if text.strip():
english_text = text.strip()
elif audio is not None:
sample_rate, audio_data = audio
# Convert to float32
if audio_data.dtype not in [np.float32, np.float64]:
audio_data = audio_data.astype(np.float32)
# Mono
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
audio_data = np.mean(audio_data, axis=1)
# Resample to 16k
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
asr_input = {"array": audio_data, "sampling_rate": 16000}
asr_result = asr(asr_input)
english_text = asr_result["text"]
else:
return "No input provided.", "", None
# Step 2: Translation
translator = get_translator(target_language)
try:
translation_result = translator(english_text)
translated_text = translation_result[0]["translation_text"]
except Exception as e:
return english_text, f"Translation error: {e}", None
# Step 3: TTS
try:
sample_rate, waveform = run_tts_inference(target_language, translated_text)
except Exception as e:
return english_text, translated_text, f"TTS error: {e}"
return english_text, translated_text, (sample_rate, waveform)
# -----------------------------------------------
# 8. Gradio Interface
# -----------------------------------------------
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
gr.Dropdown(choices=["Spanish", "Chinese", "Japanese"], value="Spanish", label="Target Language")
],
outputs=[
gr.Textbox(label="English Transcription"),
gr.Textbox(label="Translation (Target Language)"),
gr.Audio(label="Synthesized Speech in Target Language")
],
title="Multimodal Language Learning Aid (VITS-based TTS)",
description=(
"This app:\n"
"1. Transcribes English speech (via ASR) or accepts English text.\n"
"2. Translates to Spanish, Chinese, or Japanese.\n"
"3. Synthesizes speech with VITS-based or SpeechT5-based models.\n\n"
"Note: Some models are experimental and may produce errors or poor quality.\n"
"Either upload/record English audio or enter text, then select a target language."
),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()
|