Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| from pipeline_flux import FluxPipeline | |
| from transformer_flux import FluxTransformer2DModel | |
| import torch | |
| flux_model = "schnell" | |
| bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.bfloat16 | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| bfl_repo, subfolder="transformer", torch_dtype=dtype | |
| ) | |
| pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype) | |
| pipe.transformer = transformer | |
| pipe.scheduler.config.use_dynamic_shifting = False | |
| pipe.scheduler.config.time_shift = 10 | |
| # pipe.enable_model_cpu_offload() | |
| pipe = pipe.to(device) | |
| pipe.load_lora_weights( | |
| "Huage001/URAE", | |
| weight_name="urae_2k_adapter.safetensors", | |
| adapter_name="2k", | |
| ) | |
| pipe.load_lora_weights( | |
| "Huage001/URAE", | |
| weight_name="urae_4k_adapter_lora_conversion_dev.safetensors", | |
| adapter_name="4k_dev", | |
| ) | |
| pipe.load_lora_weights( | |
| "Huage001/URAE", | |
| weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors", | |
| adapter_name="4k_schnell", | |
| ) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 4096 | |
| USE_ZERO_GPU = True | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer( | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| num_inference_steps, | |
| model='2k', | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| print("Using model:", model) | |
| if model == "2k": | |
| pipe.vae.enable_tiling(True) | |
| pipe.set_adapters("2k") | |
| elif model == "4k": | |
| pipe.vae.enable_tiling(True) | |
| pipe.set_adapters(f"4k_{flux_model}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| guidance_scale=0, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| max_sequence_length=256, | |
| ntk_factor=10, | |
| proportional_attention=True, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| if USE_ZERO_GPU: | |
| infer = spaces.GPU(infer, duration=360) | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #maincontainer { | |
| display: flex; | |
| } | |
| #col1 { | |
| margin: 0 auto; | |
| max-width: 50%; | |
| } | |
| #col2 { | |
| margin: 0 auto; | |
| # max-width: 40px; | |
| } | |
| """ | |
| head = """> ***U*ltra-*R*esolution *A*daptation with *E*ase** | |
| <div style="text-align: center; display: flex; justify-content: left; gap: 5px;"> | |
| <a href="https://arxiv.org/abs/2503.16322"><img src="https://img.shields.io/badge/arXiv-2503.16322-A42C25.svg" alt="arXiv"></a> | |
| <a href="https://huggingface.co/Huage001/URAE"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a> | |
| <a href="https://huggingface.co/spaces/Yuanshi/URAE"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a> | |
| <a href="https://huggingface.co/spaces/Yuanshi/URAE_dev"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a> | |
| </div> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("# URAE (FLUX.1 schnell) \n" + head) | |
| with gr.Row(elem_id="maincontainer"): | |
| with gr.Column(elem_id="col1"): | |
| gr.Markdown("### Prompt:") | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| run_button = gr.Button("Generate", scale=1, variant="primary") | |
| gr.Markdown("### Setting:") | |
| # model = gr.Radio( | |
| # label="Model", | |
| # choices=[ | |
| # ("2K model", "2k"), | |
| # ("4K model (beta)", "4k"), | |
| # ], | |
| # value="2k", | |
| # ) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=2048, # Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=2048, # Replace with defaults that work for your model | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=4, # Replace with defaults that work for your model | |
| ) | |
| with gr.Column(elem_id="col2"): | |
| result = gr.Image(label="Result", show_label=False) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| # model, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |