Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import random | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class SpatialAttnProcessor2_0(torch.nn.Module): | |
| r""" | |
| Attention processor for IP-Adapater for PyTorch 2.0. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| text_context_len (`int`, defaults to 77): | |
| The context length of the text features. | |
| scale (`float`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| """ | |
| def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.device = device | |
| self.dtype = dtype | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.total_length = id_length + 1 | |
| self.id_length = id_length | |
| self.id_bank = {} | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None): | |
| # un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2) | |
| # un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb) | |
| # 生成一个0到1之间的随机数 | |
| global total_count,attn_count,cur_step,mask256,mask1024,mask4096 | |
| global sa16, sa32, sa64 | |
| global write | |
| if write: | |
| self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]] | |
| else: | |
| encoder_hidden_states = torch.cat(self.id_bank[cur_step][0],hidden_states[:1],self.id_bank[cur_step][1],hidden_states[1:]) | |
| # 判断随机数是否大于0.5 | |
| if cur_step <5: | |
| hidden_states = self.__call2__(attn, hidden_states,encoder_hidden_states,attention_mask,temb) | |
| else: # 256 1024 4096 | |
| random_number = random.random() | |
| if cur_step <20: | |
| rand_num = 0.3 | |
| else: | |
| rand_num = 0.1 | |
| if random_number > rand_num: | |
| if not write: | |
| if hidden_states.shape[1] == 32* 32: | |
| attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:] | |
| elif hidden_states.shape[1] ==16*16: | |
| attention_mask = mask256[mask256.shape[0] // self.total_length * self.id_length:] | |
| else: | |
| attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:] | |
| else: | |
| if hidden_states.shape[1] == 32* 32: | |
| attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length] | |
| elif hidden_states.shape[1] ==16*16: | |
| attention_mask = mask256[:mask256.shape[0] // self.total_length * self.id_length] | |
| else: | |
| attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length] | |
| hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb) | |
| else: | |
| hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb) | |
| attn_count +=1 | |
| if attn_count == total_count: | |
| attn_count = 0 | |
| cur_step += 1 | |
| mask256,mask1024,mask4096 = cal_attn_mask(self.total_length,self.id_length,sa16,sa32,sa64, device=self.device, dtype= self.dtype) | |
| return hidden_states | |
| def __call1__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if encoder_hidden_states is not None: | |
| raise Exception("not implement") | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| total_batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2) | |
| total_batch_size,nums_token,channel = hidden_states.shape | |
| img_nums = total_batch_size//2 | |
| hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel) | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states # B, N, C | |
| else: | |
| encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| # if input_ndim == 4: | |
| # tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| # if attn.residual_connection: | |
| # tile_hidden_states = tile_hidden_states + residual | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def __call2__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def cal_attn_mask(total_length,id_length,sa16,sa32,sa64,device="cuda",dtype= torch.float16): | |
| bool_matrix256 = torch.rand((1, total_length * 256),device = device,dtype = dtype) < sa16 | |
| bool_matrix1024 = torch.rand((1, total_length * 1024),device = device,dtype = dtype) < sa32 | |
| bool_matrix4096 = torch.rand((1, total_length * 4096),device = device,dtype = dtype) < sa64 | |
| bool_matrix256 = bool_matrix256.repeat(total_length,1) | |
| bool_matrix1024 = bool_matrix1024.repeat(total_length,1) | |
| bool_matrix4096 = bool_matrix4096.repeat(total_length,1) | |
| for i in range(total_length): | |
| bool_matrix256[i:i+1,id_length*256:] = False | |
| bool_matrix1024[i:i+1,id_length*1024:] = False | |
| bool_matrix4096[i:i+1,id_length*4096:] = False | |
| bool_matrix256[i:i+1,i*256:(i+1)*256] = True | |
| bool_matrix1024[i:i+1,i*1024:(i+1)*1024] = True | |
| bool_matrix4096[i:i+1,i*4096:(i+1)*4096] = True | |
| mask256 = bool_matrix256.unsqueeze(1).repeat(1,256,1).reshape(-1,total_length * 256) | |
| mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,1024,1).reshape(-1,total_length * 1024) | |
| mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,4096,1).reshape(-1,total_length * 4096) | |
| return mask256,mask1024,mask4096 | |
| def cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16): | |
| nums_1024 = (height // 32) * (width // 32) | |
| nums_4096 = (height // 16) * (width // 16) | |
| bool_matrix1024 = torch.rand((1, total_length * nums_1024),device = device,dtype = dtype) < sa32 | |
| bool_matrix4096 = torch.rand((1, total_length * nums_4096),device = device,dtype = dtype) < sa64 | |
| bool_matrix1024 = bool_matrix1024.repeat(total_length,1) | |
| bool_matrix4096 = bool_matrix4096.repeat(total_length,1) | |
| for i in range(total_length): | |
| bool_matrix1024[i:i+1,id_length*nums_1024:] = False | |
| bool_matrix4096[i:i+1,id_length*nums_4096:] = False | |
| bool_matrix1024[i:i+1,i*nums_1024:(i+1)*nums_1024] = True | |
| bool_matrix4096[i:i+1,i*nums_4096:(i+1)*nums_4096] = True | |
| mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,nums_1024,1).reshape(-1,total_length * nums_1024) | |
| mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,nums_4096,1).reshape(-1,total_length * nums_4096) | |
| return mask1024,mask4096 | |
| class AttnProcessor(nn.Module): | |
| r""" | |
| Default processor for performing attention-related computations. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size=None, | |
| cross_attention_dim=None, | |
| ): | |
| super().__init__() | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class AttnProcessor2_0(torch.nn.Module): | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size=None, | |
| cross_attention_dim=None, | |
| ): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def is_torch2_available(): | |
| return hasattr(F, "scaled_dot_product_attention") |