Spaces:
Runtime error
Runtime error
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import os | |
| from huggingface_hub import login | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| MAX_MAX_NEW_TOKENS = 128 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| model = None | |
| tokenizer = None | |
| my_token = os.getenv("HF_AUTH_TOKEN") | |
| login(token = my_token) | |
| model_id = "stabilityai/ar-stablelm-2-chat" | |
| model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
| def generate( | |
| message: str, | |
| chat_history: list[dict], | |
| system_prompt: str = "", | |
| max_new_tokens: int = 128, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| conversation += chat_history | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, # Stop generation at <EOS> | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox(label="System prompt", lines=6), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.7, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["السلام عليكم"], | |
| ["اعرب الجملة التالية: ذهبت الى السوق"], | |
| ["اضف تشكيل للجملة التالية: ضرب زيدا عمر"]، | |
| ["كم عدد بحور الشعر العربي؟"] | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| ) | |
| with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
| # def authenticate_token(token): | |
| # try: | |
| # login(token) | |
| # return "Authenticated successfully" | |
| # except: | |
| # return "Invalid token. Please try again." | |
| # # Components | |
| # token_input = gr.Textbox(label="Hugging Face Access Token", type="password", placeholder="Enter your token here...") | |
| # auth_button = gr.Button("Authenticate") | |
| # output = gr.Textbox(label="Output") | |
| # auth_button.click(fn=authenticate_token, inputs=token_input, outputs=output) | |
| chat_interface.render() | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |