Spaces:
Sleeping
Sleeping
remove visualizations for now
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import gradio as gr
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import pandas as pd
|
| 4 |
import spaces
|
| 5 |
-
import plotly.express as px
|
| 6 |
|
| 7 |
# Load dataset
|
| 8 |
from datasets import load_dataset
|
|
@@ -39,40 +38,6 @@ def classify_comments(categories):
|
|
| 39 |
df['comment_category'] = assigned_categories
|
| 40 |
return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
|
| 41 |
|
| 42 |
-
def visualize_output():
|
| 43 |
-
# Ensure the required columns exist
|
| 44 |
-
if 'comment_sentiment' not in df.columns or 'comment_category' not in df.columns:
|
| 45 |
-
return None, "Error: Please classify comments before visualizing."
|
| 46 |
-
|
| 47 |
-
try:
|
| 48 |
-
# Bar Chart of Sentiment by Category
|
| 49 |
-
sentiment_by_category = df.groupby(['comment_category', 'comment_sentiment']).size().unstack()
|
| 50 |
-
print("Sentiment by Category:")
|
| 51 |
-
print(sentiment_by_category)
|
| 52 |
-
bar_chart = px.bar(
|
| 53 |
-
sentiment_by_category,
|
| 54 |
-
barmode='stack',
|
| 55 |
-
title="Sentiment by Comment Category",
|
| 56 |
-
labels={'value': 'Count', 'comment_category': 'Category', 'comment_sentiment': 'Sentiment'}
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
# KPI Visualizations
|
| 60 |
-
avg_nps = df['customer_nps'].mean()
|
| 61 |
-
avg_nps_by_segment = df.groupby('customer_segment')['customer_nps'].mean().reset_index()
|
| 62 |
-
|
| 63 |
-
kpi_visualization = f"""
|
| 64 |
-
**Average NPS Scores:**
|
| 65 |
-
- Overall: {avg_nps:.2f}
|
| 66 |
-
**Average NPS by Segment:**
|
| 67 |
-
{avg_nps_by_segment.to_markdown(index=False)}
|
| 68 |
-
"""
|
| 69 |
-
|
| 70 |
-
return bar_chart, kpi_visualization
|
| 71 |
-
|
| 72 |
-
except Exception as e:
|
| 73 |
-
print(f"Error in visualize_output: {e}")
|
| 74 |
-
return None, f"Error: {str(e)}"
|
| 75 |
-
|
| 76 |
# Gradio Interface
|
| 77 |
with gr.Blocks() as nps:
|
| 78 |
# State to store categories
|
|
@@ -104,14 +69,6 @@ with gr.Blocks() as nps:
|
|
| 104 |
classify_btn = gr.Button("Classify Comments")
|
| 105 |
output = gr.HTML()
|
| 106 |
|
| 107 |
-
# Visualize button
|
| 108 |
-
visualize_btn = gr.Button("Visualize Output")
|
| 109 |
-
sentiment_pie = gr.Plot(label="Sentiment Distribution")
|
| 110 |
-
category_pie = gr.Plot(label="Comment Category Distribution")
|
| 111 |
-
stacked_bar = gr.Plot(label="Sentiment by Comment Category")
|
| 112 |
-
kpi_visualization = gr.Markdown()
|
| 113 |
-
sentiment_by_segment_pie = gr.Plot(label="Sentiment by Customer Segment")
|
| 114 |
-
|
| 115 |
# Function to load data from uploaded CSV
|
| 116 |
def load_data(file):
|
| 117 |
global df # Ensure we're modifying the global DataFrame
|
|
@@ -159,9 +116,5 @@ with gr.Blocks() as nps:
|
|
| 159 |
inputs=categories,
|
| 160 |
outputs=output
|
| 161 |
)
|
| 162 |
-
visualize_btn.click(
|
| 163 |
-
fn=visualize_output,
|
| 164 |
-
outputs=[sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie]
|
| 165 |
-
)
|
| 166 |
|
| 167 |
nps.launch(share=True)
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import pandas as pd
|
| 4 |
import spaces
|
|
|
|
| 5 |
|
| 6 |
# Load dataset
|
| 7 |
from datasets import load_dataset
|
|
|
|
| 38 |
df['comment_category'] = assigned_categories
|
| 39 |
return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
# Gradio Interface
|
| 42 |
with gr.Blocks() as nps:
|
| 43 |
# State to store categories
|
|
|
|
| 69 |
classify_btn = gr.Button("Classify Comments")
|
| 70 |
output = gr.HTML()
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# Function to load data from uploaded CSV
|
| 73 |
def load_data(file):
|
| 74 |
global df # Ensure we're modifying the global DataFrame
|
|
|
|
| 116 |
inputs=categories,
|
| 117 |
outputs=output
|
| 118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
nps.launch(share=True)
|