File size: 12,962 Bytes
6579ca3
becc8f7
 
 
 
6579ca3
 
 
becc8f7
6579ca3
becc8f7
6579ca3
becc8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
---
title: CogniChat - Chat with Your Documents
emoji: πŸ€–
colorFrom: blue
colorTo: purple
sdk: docker
pinned: false
license: mit
app_port: 7860
---
# πŸ€– CogniChat - Intelligent Document Chat System

<div align="center">

![License](https://img.shields.io/badge/license-MIT-blue.svg)
![Python](https://img.shields.io/badge/python-3.9+-brightgreen.svg)
![Docker](https://img.shields.io/badge/docker-ready-blue.svg)
![HuggingFace](https://img.shields.io/badge/πŸ€—-Spaces-yellow.svg)

**Transform your documents into interactive conversations powered by advanced RAG technology**

<p align="center">
  <img src="Document_reader.gif" width="100%" alt="CogniChat Demo">
</p>

[Features](#-features) β€’ [Quick Start](#-quick-start) β€’ [Architecture](#-architecture) β€’ [Deployment](#-deployment) β€’ [API](#-api-reference)

</div>

---

## πŸ“‹ Table of Contents

- [Overview](#-overview)
- [Features](#-features)
- [Architecture](#-architecture)
- [Technology Stack](#-technology-stack)
- [Quick Start](#-quick-start)
- [Deployment](#-deployment)
- [Configuration](#-configuration)
- [API Reference](#-api-reference)
- [Troubleshooting](#-troubleshooting)
- [Contributing](#-contributing)
- [License](#-license)

---

## 🎯 Overview

CogniChat is a production-ready, intelligent document chat application that leverages **Retrieval Augmented Generation (RAG)** to enable natural conversations with your documents. Built with enterprise-grade technologies, it provides accurate, context-aware responses from your document corpus.

### Why CogniChat?


- **πŸ”‰ Audio Overview of Your document**:Simply ask the question and listen the audio. Now your document can speak with you.
- **🎯 Accurate Retrieval**: Hybrid search combining BM25 and FAISS for optimal results
- **πŸ’¬ Conversational Memory**: Maintains context across multiple interactions
- **πŸ“„ Multi-Format Support**: Handles PDF, DOCX, TXT, and image files
- **πŸš€ Production Ready**: Docker support, comprehensive error handling, and security best practices
- **🎨 Modern UI**: Responsive design with dark mode and real-time streaming

---

## ✨ Features

### Core Capabilities

| Feature | Description |
|---------|-------------|
| **Multi-Format Processing** | Upload and process PDF, DOCX, TXT, and image files |
| **Hybrid Search** | Combines BM25 (keyword) and FAISS (semantic) for superior retrieval |
| **Conversational AI** | Powered by Groq's Llama 3.1 for intelligent responses |
| **Memory Management** | Maintains chat history for contextual conversations |
| **Text-to-Speech** | Built-in TTS for audio playback of responses |
| **Streaming Responses** | Real-time token streaming for better UX |
| **Document Chunking** | Intelligent text splitting for optimal context windows |

### Advanced Features

- **Semantic Embeddings**: HuggingFace `all-miniLM-L6-v2` for accurate vector representations
- **Reranking**: Contextual compression for improved relevance
- **Error Handling**: Comprehensive fallback mechanisms and error recovery
- **Security**: Non-root Docker execution and environment-based secrets
- **Scalability**: Optimized for both local and cloud deployments

---

## πŸ— Architecture

### RAG Pipeline Overview

```mermaid
graph TB
    A[Document Upload] --> B[Document Processing]
    B --> C[Text Extraction]
    C --> D[Chunking Strategy]
    D --> E[Embedding Generation]
    E --> F[Vector Store FAISS]
    
    G[User Query] --> H[Query Embedding]
    H --> I[Hybrid Retrieval]
    
    F --> I
    J[BM25 Index] --> I
    
    I --> K[Reranking]
    K --> L[Context Assembly]
    L --> M[LLM Groq Llama 3.1]
    M --> N[Response Generation]
    N --> O[Streaming Output]
    
    P[Chat History] --> M
    N --> P
    
    style A fill:#e1f5ff
    style G fill:#e1f5ff
    style F fill:#ffe1f5
    style J fill:#ffe1f5
    style M fill:#f5e1ff
    style O fill:#e1ffe1
```

### System Architecture

```mermaid
graph LR
    A[Client Browser] -->|HTTP/WebSocket| B[Flask Server]
    B --> C[Document Processor]
    B --> D[RAG Engine]
    B --> E[TTS Service]
    
    C --> F[(File Storage)]
    D --> G[(FAISS Vector DB)]
    D --> H[(BM25 Index)]
    D --> I[Groq API]
    
    J[HuggingFace Models] --> D
    
    style B fill:#4a90e2
    style D fill:#e24a90
    style I fill:#90e24a
```

### Data Flow

1. **Document Ingestion**: Files are uploaded and validated
2. **Processing Pipeline**: Text extraction β†’ Chunking β†’ Embedding
3. **Indexing**: Dual indexing (FAISS + BM25) for hybrid search
4. **Query Processing**: User queries are embedded and searched
5. **Retrieval**: Top-k relevant chunks retrieved using hybrid approach
6. **Generation**: LLM generates contextual responses with citations
7. **Streaming**: Responses streamed back to client in real-time

---

## πŸ›  Technology Stack

### Backend

| Component | Technology | Purpose |
|-----------|-----------|---------|
| **Framework** | Flask 2.3+ | Web application framework |
| **RAG** | LangChain | RAG pipeline orchestration |
| **Vector DB** | FAISS | Fast similarity search |
| **Keyword Search** | BM25 | Sparse retrieval |
| **LLM** | Groq Llama 3.1 | Response generation |
| **Embeddings** | HuggingFace Transformers | Semantic embeddings |
| **Doc Processing** | Unstructured, PyPDF, python-docx | Multi-format parsing |

### Frontend

| Component | Technology |
|-----------|-----------|
| **UI Framework** | TailwindCSS |
| **JavaScript** | Vanilla ES6+ |
| **Icons** | Font Awesome |
| **Markdown** | Marked.js |

### Infrastructure

- **Containerization**: Docker + Docker Compose
- **Deployment**: HuggingFace Spaces, local, cloud-agnostic
- **Security**: Environment-based secrets, non-root execution

---

## πŸš€ Quick Start

### Prerequisites

- Python 3.9+
- Docker (optional, recommended)
- Groq API Key ([Get one here](https://console.groq.com/keys))

### Installation Methods

#### 🐳 Method 1: Docker (Recommended)

```bash
# Clone the repository
git clone https://github.com/RautRitesh/Chat-with-docs
cd cognichat

# Create environment file
cp .env.example .env

# Add your Groq API key to .env
echo "GROQ_API_KEY=your_actual_api_key_here" >> .env

# Build and run with Docker Compose
docker-compose up -d

# Or build manually
docker build -t cognichat .
docker run -p 7860:7860 --env-file .env cognichat
```

#### 🐍 Method 2: Local Python Environment

```bash
# Clone the repository
git clone https://github.com/RautRitesh/Chat-with-docs
cd cognichat

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Set environment variables
export GROQ_API_KEY=your_actual_api_key_here

# Run the application
python app.py
```

#### πŸ€— Method 3: HuggingFace Spaces

1. Fork this repository
2. Create a new Space on [HuggingFace](https://huggingface.co/spaces)
3. Link your forked repository
4. Add `GROQ_API_KEY` in Settings β†’ Repository Secrets
5. Space will auto-deploy!

### First Steps

1. Open `http://localhost:7860` in your browser
2. Upload a document (PDF, DOCX, TXT, or image)
3. Wait for processing (progress indicator will show status)
4. Start chatting with your document!
5. Use the πŸ”Š button to hear responses via TTS

---

## πŸ“¦ Deployment

### Environment Variables

Create a `.env` file with the following variables:

```bash
# Required
GROQ_API_KEY=your_groq_api_key_here

# Optional
PORT=7860
HF_HOME=/tmp/huggingface_cache  # For HF Spaces
FLASK_DEBUG=0  # Set to 1 for development
MAX_UPLOAD_SIZE=10485760  # 10MB default
```

### Docker Deployment

```bash
# Production build
docker build -t cognichat:latest .

# Run with resource limits
docker run -d \
  --name cognichat \
  -p 7860:7860 \
  --env-file .env \
  --memory="2g" \
  --cpus="1.5" \
  cognichat:latest
```

### Docker Compose

```yaml
version: '3.8'

services:
  cognichat:
    build: .
    ports:
      - "7860:7860"
    environment:
      - GROQ_API_KEY=${GROQ_API_KEY}
    volumes:
      - ./data:/app/data
    restart: unless-stopped
```

### HuggingFace Spaces Configuration

Add these files to your repository:

**app_port** in `README.md` header:
```yaml
app_port: 7860
```

**Repository Secrets**:
- `GROQ_API_KEY`: Your Groq API key

The application automatically detects HF Spaces environment and adjusts paths accordingly.

---

## βš™οΈ Configuration

### Document Processing Settings

```python
# In app.py - Customize these settings
CHUNK_SIZE = 1000  # Characters per chunk
CHUNK_OVERLAP = 200  # Overlap between chunks
EMBEDDING_MODEL = "sentence-transformers/all-miniLM-L6-v2"
RETRIEVER_K = 5  # Number of chunks to retrieve
```

### Model Configuration

```python
# LLM Settings
LLM_PROVIDER = "groq"
MODEL_NAME = "llama-3.1-70b-versatile"
TEMPERATURE = 0.7
MAX_TOKENS = 2048
```

### Search Configuration

```python
# Hybrid Search Weights
FAISS_WEIGHT = 0.6  # Semantic search weight
BM25_WEIGHT = 0.4   # Keyword search weight
```

---

## πŸ“š API Reference

### Endpoints

#### Upload Document

```http
POST /upload
Content-Type: multipart/form-data

{
  "file": <binary>
}
```

**Response**:
```json
{
  "status": "success",
  "message": "Document processed successfully",
  "filename": "example.pdf",
  "chunks": 45
}
```

#### Chat

```http
POST /chat
Content-Type: application/json

{
  "message": "What is the main topic?",
  "stream": true
}
```

**Response** (Streaming):
```
data: {"token": "The", "done": false}
data: {"token": " main", "done": false}
data: {"token": " topic", "done": false}
data: {"done": true}
```

#### Clear Session

```http
POST /clear
```

**Response**:
```json
{
  "status": "success",
  "message": "Session cleared"
}
```

---

## πŸ”§ Troubleshooting

### Common Issues

#### 1. Permission Errors in Docker

**Problem**: `Permission denied` when writing to cache directories

**Solution**:
```bash
# Rebuild with proper permissions
docker build --no-cache -t cognichat .

# Or run with volume permissions
docker run -v $(pwd)/cache:/tmp/huggingface_cache \
  --user $(id -u):$(id -g) \
  cognichat
```

#### 2. Model Loading Fails

**Problem**: Cannot download HuggingFace models

**Solution**:
```bash
# Pre-download models
python test_embeddings.py

# Or use HF_HOME environment variable
export HF_HOME=/path/to/writable/directory
```

#### 3. Chat Returns 400 Error

**Problem**: Upload directory not writable (common in HF Spaces)

**Solution**: Application now automatically uses `/tmp/uploads` in HF Spaces environment. Ensure latest version is deployed.

#### 4. API Key Invalid

**Problem**: Groq API returns authentication error

**Solution**:
- Verify key at [Groq Console](https://console.groq.com/keys)
- Check `.env` file has correct format: `GROQ_API_KEY=gsk_...`
- Restart application after updating key

### Debug Mode

Enable detailed logging:

```bash
export FLASK_DEBUG=1
export LANGCHAIN_VERBOSE=true
python app.py
```

---

## πŸ§ͺ Testing

```bash
# Run test suite
pytest tests/

# Test embedding model
python test_embeddings.py

# Test document processing
pytest tests/test_document_processor.py

# Integration tests
pytest tests/test_integration.py
```

---

## 🀝 Contributing

We welcome contributions! Please follow these steps:

1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request

### Development Guidelines

- Follow PEP 8 style guide
- Add tests for new features
- Update documentation
- Ensure Docker build succeeds

---

## πŸ“ Changelog

### Version 2.0 (October 2025)

βœ… **Major Improvements**:
- Fixed Docker permission issues
- HuggingFace Spaces compatibility
- Enhanced error handling
- Multiple model loading fallbacks
- Improved security (non-root execution)

βœ… **Bug Fixes**:
- Upload directory write permissions
- Cache directory access
- Model initialization reliability

### Version 1.0 (Initial Release)

- Basic RAG functionality
- PDF and DOCX support
- FAISS vector store
- Conversational memory

---

## πŸ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

---

## πŸ™ Acknowledgments

- **LangChain** for RAG framework
- **Groq** for high-speed LLM inference
- **HuggingFace** for embeddings and hosting
- **FAISS** for efficient vector search

---

## πŸ“ž Support

- **Issues**: [GitHub Issues](https://github.com/yourusername/cognichat/issues)
- **Discussions**: [GitHub Discussions](https://github.com/yourusername/cognichat/discussions)
- **Email**: riteshraut123321@gmail.com

---

<div align="center">

**Made with ❀️ by the CogniChat Team**

[⭐ Star us on GitHub](https://github.com/yourusername/cognichat) β€’ [πŸ› Report Bug](https://github.com/yourusername/cognichat/issues) β€’ [✨ Request Feature](https://github.com/yourusername/cognichat/issues)

</div>