File size: 17,624 Bytes
becc8f7 be8f70c becc8f7 be8f70c becc8f7 be8f70c becc8f7 f7d42c1 becc8f7 f7d42c1 457467f f7d42c1 457467f f7d42c1 457467f f7d42c1 457467f f7d42c1 457467f f7d42c1 be8f70c 457467f f7d42c1 457467f f7d42c1 457467f f7d42c1 457467f be8f70c 457467f be8f70c f7d42c1 be8f70c 457467f be8f70c 457467f f7d42c1 457467f f7d42c1 457467f f7d42c1 457467f f7d42c1 457467f f7d42c1 457467f be8f70c 457467f f7d42c1 be8f70c f7d42c1 be8f70c f7d42c1 457467f f7d42c1 becc8f7 be8f70c becc8f7 be8f70c becc8f7 f7d42c1 becc8f7 be8f70c becc8f7 457467f be8f70c 457467f be8f70c 457467f be8f70c f7d42c1 457467f be8f70c 457467f be8f70c 457467f becc8f7 457467f becc8f7 457467f becc8f7 be8f70c 457467f becc8f7 457467f be8f70c 457467f becc8f7 457467f becc8f7 457467f becc8f7 457467f becc8f7 457467f becc8f7 457467f f7d42c1 457467f be8f70c f7d42c1 becc8f7 457467f becc8f7 457467f be8f70c becc8f7 457467f becc8f7 457467f becc8f7 457467f f7d42c1 becc8f7 457467f becc8f7 be8f70c becc8f7 be8f70c 457467f becc8f7 457467f be8f70c 457467f f7d42c1 457467f f7d42c1 becc8f7 457467f f7d42c1 457467f be8f70c 457467f becc8f7 457467f f7d42c1 457467f becc8f7 457467f becc8f7 457467f becc8f7 457467f be8f70c 457467f be8f70c 457467f be8f70c 457467f becc8f7 f7d42c1 457467f be8f70c 457467f becc8f7 f7d42c1 457467f be8f70c 457467f be8f70c 457467f be8f70c 457467f be8f70c 457467f be8f70c 457467f becc8f7 be8f70c 457467f 76039ca 457467f becc8f7 be8f70c becc8f7 457467f becc8f7 457467f becc8f7 457467f becc8f7 be8f70c 457467f becc8f7 457467f be8f70c 457467f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import os
import uuid
from flask import Flask, request, render_template, session, jsonify, Response, stream_with_context
from werkzeug.utils import secure_filename
from rag_processor import create_rag_chain
from typing import Sequence, Any, List
import fitz
import re
import io
from gtts import gTTS
from langchain_core.documents import Document
from langchain_community.document_loaders import TextLoader, Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.retrievers import EnsembleRetriever, ContextualCompressionRetriever
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
from langchain_community.retrievers import BM25Retriever
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain.storage import InMemoryStore
from sentence_transformers.cross_encoder import CrossEncoder
app = Flask(__name__)
app.config['SECRET_KEY'] = os.urandom(24)
TEMPERATURE_LABELS = {
'0.2': 'Precise',
'0.4': 'Confident',
'0.6': 'Balanced',
'0.8': 'Flexible',
'1.0': 'Creative',
}
class LocalReranker(BaseDocumentCompressor):
model: Any
top_n: int = 5
class Config:
arbitrary_types_allowed = True
def compress_documents(self, documents: Sequence[Document], query: str,
callbacks=None) -> Sequence[Document]:
if not documents:
return []
pairs = [[query, doc.page_content] for doc in documents]
scores = self.model.predict(pairs, show_progress_bar=False)
doc_scores = list(zip(documents, scores))
sorted_doc_scores = sorted(doc_scores, key=lambda x: x[1],
reverse=True)
top_docs = []
for (doc, score) in sorted_doc_scores[:self.top_n]:
doc.metadata['rerank_score'] = float(score)
top_docs.append(doc)
return top_docs
def create_optimized_parent_child_chunks(all_docs):
if not all_docs:
print ('CHUNKING: No input documents provided!')
return ([], [], [])
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=900,
chunk_overlap=200, separators=['\n\n', '\n', '. ', '! ',
'? ', '; ', ', ', ' ', ''])
child_splitter = RecursiveCharacterTextSplitter(chunk_size=350,
chunk_overlap=80, separators=['\n', '. ', '! ', '? ', '; ',
', ', ' ', ''])
parent_docs = parent_splitter.split_documents(all_docs)
doc_ids = [str(uuid.uuid4()) for _ in parent_docs]
child_docs = []
for (i, parent_doc) in enumerate(parent_docs):
parent_id = doc_ids[i]
children = child_splitter.split_documents([parent_doc])
for (j, child) in enumerate(children):
child.metadata.update({'doc_id': parent_id,
'chunk_index': j,
'total_chunks': len(children),
'is_first_chunk': j == 0,
'is_last_chunk': j == len(children)
- 1})
if len(children) > 1:
if j == 0:
child.page_content = '[Beginning] ' + child.page_content
elif j == len(children) - 1:
child.page_content = '[Continues...] ' + child.page_content
child_docs.append(child)
print (f"CHUNKING: Created {len(parent_docs)} parent and {len(child_docs)} child chunks."
)
return (parent_docs, child_docs, doc_ids)
def get_context_aware_parents(docs: List[Document], store: InMemoryStore) -> List[Document]:
if not docs:
return []
(parent_scores, child_content_by_parent) = ({}, {})
for doc in docs:
parent_id = doc.metadata.get('doc_id')
if parent_id:
parent_scores[parent_id] = parent_scores.get(parent_id, 0) \
+ 1
if parent_id not in child_content_by_parent:
child_content_by_parent[parent_id] = []
child_content_by_parent[parent_id].append(doc.page_content)
parent_ids = list(parent_scores.keys())
parents = store.mget(parent_ids)
enhanced_parents = []
for (i, parent) in enumerate(parents):
if parent is not None:
parent_id = parent_ids[i]
if parent_id in child_content_by_parent:
child_excerpts = '\n'.join(child_content_by_parent[parent_id][:3])
enhanced_content = f"{parent.page_content}\n\nRelevant excerpts:\n{child_excerpts}"
enhanced_parent =Document(page_content=enhanced_content,
metadata={**parent.metadata,
'child_relevance_score': parent_scores[parent_id],
'matching_children': len(child_content_by_parent[parent_id])})
enhanced_parents.append(enhanced_parent)
else:
print (f"PARENT_FETCH: Parent {parent_ids[i]} not found in store!")
enhanced_parents.sort(key=lambda p: p.metadata.get('child_relevance_score', 0), reverse=True)
return enhanced_parents
is_hf_spaces = bool(os.getenv('SPACE_ID') or os.getenv('SPACES_ZERO_GPU'
))
app.config['UPLOAD_FOLDER'] = '/tmp/uploads' if is_hf_spaces else 'uploads'
try:
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
print (f"Upload folder ready: {app.config['UPLOAD_FOLDER']}")
except Exception as e:
print (f"Failed to create upload folder, falling back to /tmp: {e}")
app.config['UPLOAD_FOLDER'] = '/tmp/uploads'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
session_data = {}
message_histories = {}
print ('Loading embedding model...')
try:
EMBEDDING_MODEL = \
HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'
, model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True})
print ('Embedding model loaded.')
except Exception as e:
print (f"FATAL: Could not load embedding model. Error: {e}")
raise e
print ('Loading reranker model...')
try:
RERANKER_MODEL = \
CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2',
device='cpu')
print ('Reranker model loaded.')
except Exception as e:
print (f"FATAL: Could not load reranker model. Error: {e}")
raise e
def load_pdf_with_fallback(filepath):
try:
docs = []
with fitz.open(filepath) as pdf_doc:
for (page_num, page) in enumerate(pdf_doc):
text = page.get_text()
if text.strip():
docs.append(Document(page_content=text,
metadata={'source': os.path.basename(filepath),
'page': page_num + 1}))
if docs:
print (f"Loaded PDF: {os.path.basename(filepath)} - {len(docs)} pages"
)
return docs
else:
raise ValueError('No text content found in PDF.')
except Exception as e:
print (f"PyMuPDF failed for {filepath}: {e}")
raise
LOADER_MAPPING = {'.txt': TextLoader, '.pdf': load_pdf_with_fallback,
'.docx': Docx2txtLoader}
def get_session_history(session_id: str) -> ChatMessageHistory:
if session_id not in message_histories:
message_histories[session_id] = ChatMessageHistory()
return message_histories[session_id]
@app.route('/health', methods=['GET'])
def health_check():
return (jsonify({'status': 'healthy'}), 200)
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_files():
files = request.files.getlist('file')
temperature_str = request.form.get('temperature', '0.2')
temperature = float(temperature_str)
model_name = request.form.get('model_name',
'moonshotai/kimi-k2-instruct')
print (f"UPLOAD: Model: {model_name}, Temp: {temperature}")
if not files or all(f.filename == '' for f in files):
return (jsonify({'status': 'error',
'message': 'No selected files.'}), 400)
(all_docs, processed_files, failed_files) = ([], [], [])
print (f"Processing {len(files)} file(s)...")
for file in files:
if file and file.filename:
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
try:
file.save(filepath)
file_ext = os.path.splitext(filename)[1].lower()
if file_ext not in LOADER_MAPPING:
raise ValueError('Unsupported file format.')
loader_func = LOADER_MAPPING[file_ext]
docs = loader_func(filepath) if file_ext == '.pdf' \
else loader_func(filepath).load()
if not docs:
raise ValueError('No content extracted.')
all_docs.extend(docs)
processed_files.append(filename)
except Exception as e:
print (f"✗ Error processing {filename}: {e}")
failed_files.append(f"{filename} ({e})")
if not all_docs:
return (jsonify({'status': 'error',
'message': f"Failed to process all files. Reasons: {', '.join(failed_files)}"
}), 400)
print (f"UPLOAD: Processed {len(processed_files)} files.")
try:
print ('Starting RAG pipeline setup...')
(parent_docs, child_docs, doc_ids) = \
create_optimized_parent_child_chunks(all_docs)
if not child_docs:
raise ValueError('No child documents created during chunking.')
vectorstore = FAISS.from_documents(child_docs, EMBEDDING_MODEL)
store = InMemoryStore()
store.mset(list(zip(doc_ids, parent_docs)))
print (f"Indexed {len(child_docs)} document chunks.")
bm25_retriever = BM25Retriever.from_documents(child_docs)
bm25_retriever.k = 12
faiss_retriever = vectorstore.as_retriever(search_kwargs={'k': 12})
ensemble_retriever = \
EnsembleRetriever(retrievers=[bm25_retriever,
faiss_retriever], weights=[0.6, 0.4])
reranker = LocalReranker(model=RERANKER_MODEL, top_n=5)
def get_parents(docs: List[Document]) -> List[Document]:
return get_context_aware_parents(docs, store)
compression_retriever = \
ContextualCompressionRetriever(base_compressor=reranker,
base_retriever=ensemble_retriever)
final_retriever = compression_retriever | get_parents
session_id = str(uuid.uuid4())
(rag_chain, api_key_manager) = \
create_rag_chain(retriever=final_retriever,
get_session_history_func=get_session_history,
model_name=model_name,
temperature=temperature)
session_data[session_id] = {'chain': rag_chain,
'model_name': model_name,
'temperature': temperature,
'api_key_manager': api_key_manager}
success_msg = f"Processed: {', '.join(processed_files)}"
if failed_files:
success_msg += f". Failed: {', '.join(failed_files)}"
mode_label = TEMPERATURE_LABELS.get(temperature_str,
temperature_str)
print (f"UPLOAD COMPLETE: Session {session_id} is ready.")
return jsonify({
'status': 'success',
'filename': success_msg,
'session_id': session_id,
'model_name': model_name,
'mode': mode_label,
})
except Exception as e:
import traceback
traceback.print_exc()
return (jsonify({'status': 'error',
'message': f'RAG setup failed: {e}'}), 500)
@app.route('/chat', methods=['POST', 'GET'])
def chat():
if request.method == 'GET':
question = request.args.get('question')
session_id = request.args.get('session_id')
print(f"Received GET request for chat: session={session_id}, question={question[:50]}...")
elif request.method == 'POST':
data = request.get_json()
question = data.get('question')
session_id = data.get('session_id') or session.get('session_id')
print(f"Received POST request for chat: session={session_id}, question={question[:50]}...")
else:
return (jsonify({'status': 'error', 'message': 'Method not allowed'}), 405)
if not question:
error_msg = "Error: No question provided."
print(f"CHAT Validation Error: {error_msg}")
if request.method == 'GET':
def error_stream():
yield f'data: {{"error": "{error_msg}"}}\n\n'
return Response(stream_with_context(error_stream()), mimetype='text/event-stream', status=400)
return jsonify({'status': 'error','message': error_msg}), 400
if not session_id or session_id not in session_data:
error_msg = "Error: Invalid session. Please upload documents first."
print(f"CHAT Validation Error: Invalid session {session_id}.")
if request.method == 'GET':
def error_stream():
yield f'data: {{"error": "{error_msg}"}}\n\n'
return Response(stream_with_context(error_stream()), mimetype='text/event-stream', status=400)
return jsonify({'status': 'error', 'message': error_msg }), 400
try:
session_info = session_data[session_id]
rag_chain = session_info['chain']
model_name = session_info['model_name']
temperature_float = session_info['temperature']
temperature_str = str(temperature_float)
mode_label = TEMPERATURE_LABELS.get(temperature_str, temperature_str)
print (f"CHAT: Streaming response for session {session_id} (Model: {model_name}, Temp: {temperature_float})...")
def generate_chunks():
full_response = ''
try:
stream_iterator = rag_chain.stream({'question': question},
config={'configurable': {'session_id': session_id}})
for chunk in stream_iterator:
if isinstance(chunk, str):
full_response += chunk
token_escaped = chunk.replace('\\', '\\\\').replace('"', '\\"').replace('\n', '\\n')
model_name_escaped = model_name.replace('"', '\\"')
mode_label_escaped = mode_label.replace('"', '\\"')
yield f'data: {{"token": "{token_escaped}", "model_name": "{model_name_escaped}", "mode": "{mode_label_escaped}"}}\n\n'
else:
print(f"Received non-string chunk: {type(chunk)}")
print ('CHAT: Streaming finished successfully.')
except Exception as e:
print(f"CHAT Error during streaming generation: {e}")
import traceback
traceback.print_exc()
error_msg = f"Error during response generation: {str(e)}".replace('\\', '\\\\').replace('"', '\\"').replace('\n', '\\n')
yield f'data: {{"error": "{error_msg}"}}\n\n'
return Response(stream_with_context(generate_chunks()), mimetype='text/event-stream')
except Exception as e:
print(f"CHAT Setup Error: {e}")
import traceback
traceback.print_exc()
error_msg = f"Error setting up chat stream: {str(e)}"
if request.method == 'GET':
def error_stream():
clean_error_msg= error_msg.replace("\"", "\\\"").replace("n", "\\n")
yield f'data: {{"error": "{clean_error_msg}"}}\n\n'
return Response(stream_with_context(error_stream()), mimetype='text/event-stream', status=500)
return (jsonify({'status': 'error', 'message': error_msg}), 500)
def clean_markdown_for_tts(text: str) -> str:
text = re.sub(r'\[.*?\]\(.*?\)', '', text)
text = re.sub(r'[`*_#]', '', text)
text = re.sub(r'^\s*[\-\*\+]\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^\s*\d+\.\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^\s*>\s?', '', text, flags=re.MULTILINE)
text = re.sub(r'\n+', ' ', text)
text = re.sub(r'\s{2,}', ' ', text)
return text.strip()
@app.route('/tts', methods=['POST'])
def text_to_speech():
data = request.get_json()
text = data.get('text')
if not text:
return (jsonify({'status': 'error',
'message': 'No text provided.'}), 400)
try:
clean_text = clean_markdown_for_tts(text)
if not clean_text:
return (jsonify({'status': 'error', 'message': 'No speakable text found.'}), 400)
tts = gTTS(clean_text, lang='en')
mp3_fp = io.BytesIO()
tts.write_to_fp(mp3_fp)
mp3_fp.seek(0)
return Response(mp3_fp, mimetype='audio/mpeg')
except Exception as e:
print (f"TTS Error: {e}")
return (jsonify({'status': 'error',
'message': 'Failed to generate audio.'}), 500)
if __name__ == '__main__':
port = int(os.environ.get('PORT', 7860))
print (f"Starting Flask app on port {port}")
app.run(host='0.0.0.0', port=port, debug=False, threaded=True) |