File size: 17,624 Bytes
becc8f7
 
be8f70c
becc8f7
 
 
 
 
 
 
 
be8f70c
becc8f7
 
 
be8f70c
 
becc8f7
 
 
f7d42c1
becc8f7
 
 
f7d42c1
457467f
 
 
 
 
 
f7d42c1
 
 
 
 
 
 
457467f
 
f7d42c1
 
 
 
 
457467f
 
f7d42c1
457467f
 
f7d42c1
 
 
457467f
f7d42c1
 
be8f70c
457467f
 
 
 
 
 
 
 
f7d42c1
 
 
 
457467f
f7d42c1
 
457467f
 
 
 
 
 
 
f7d42c1
457467f
be8f70c
457467f
be8f70c
f7d42c1
 
be8f70c
457467f
 
be8f70c
457467f
 
 
f7d42c1
457467f
f7d42c1
457467f
 
 
 
f7d42c1
457467f
f7d42c1
 
 
457467f
 
f7d42c1
 
 
457467f
be8f70c
 
457467f
 
 
f7d42c1
 
be8f70c
f7d42c1
be8f70c
f7d42c1
 
457467f
 
 
f7d42c1
becc8f7
 
 
be8f70c
becc8f7
be8f70c
becc8f7
 
 
f7d42c1
becc8f7
 
be8f70c
becc8f7
457467f
 
 
 
be8f70c
457467f
be8f70c
457467f
 
be8f70c
f7d42c1
457467f
 
 
be8f70c
457467f
be8f70c
457467f
 
becc8f7
 
 
 
 
457467f
becc8f7
457467f
 
 
 
becc8f7
be8f70c
457467f
becc8f7
457467f
 
 
be8f70c
457467f
 
 
 
 
becc8f7
 
 
457467f
 
becc8f7
 
457467f
becc8f7
457467f
 
 
becc8f7
 
457467f
 
 
becc8f7
 
 
 
457467f
f7d42c1
457467f
 
 
be8f70c
f7d42c1
becc8f7
457467f
 
becc8f7
457467f
be8f70c
becc8f7
 
 
 
 
 
 
457467f
 
becc8f7
457467f
 
 
 
becc8f7
 
 
457467f
f7d42c1
becc8f7
 
457467f
 
 
becc8f7
be8f70c
becc8f7
be8f70c
457467f
 
 
 
becc8f7
457467f
 
 
be8f70c
457467f
 
 
 
 
 
 
f7d42c1
457467f
 
 
 
 
 
 
f7d42c1
becc8f7
 
457467f
 
 
 
 
 
 
 
 
 
 
f7d42c1
457467f
 
 
 
 
 
be8f70c
457467f
becc8f7
457467f
 
f7d42c1
 
457467f
 
becc8f7
457467f
 
 
 
becc8f7
457467f
becc8f7
457467f
 
 
be8f70c
457467f
 
 
 
be8f70c
457467f
 
 
 
 
be8f70c
457467f
 
 
 
 
becc8f7
f7d42c1
457467f
be8f70c
457467f
 
 
 
 
becc8f7
f7d42c1
 
 
 
 
 
457467f
be8f70c
457467f
 
 
 
 
 
 
 
be8f70c
457467f
 
 
 
 
 
be8f70c
457467f
 
be8f70c
457467f
 
be8f70c
457467f
 
 
 
 
 
becc8f7
be8f70c
457467f
 
 
 
 
76039ca
 
457467f
 
 
becc8f7
 
be8f70c
 
 
 
 
 
 
becc8f7
 
457467f
becc8f7
 
457467f
 
 
 
 
becc8f7
457467f
 
 
 
 
 
 
 
becc8f7
 
be8f70c
457467f
 
 
becc8f7
 
457467f
be8f70c
457467f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import os
import uuid
from flask import Flask, request, render_template, session, jsonify, Response, stream_with_context 
from werkzeug.utils import secure_filename
from rag_processor import create_rag_chain
from typing import Sequence, Any, List
import fitz
import re
import io
from gtts import gTTS
from langchain_core.documents import Document
from langchain_community.document_loaders import TextLoader, Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.retrievers import EnsembleRetriever, ContextualCompressionRetriever
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
from langchain_community.retrievers import BM25Retriever
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain.storage import InMemoryStore
from sentence_transformers.cross_encoder import CrossEncoder

app = Flask(__name__)
app.config['SECRET_KEY'] = os.urandom(24)
TEMPERATURE_LABELS = {
    '0.2': 'Precise',
    '0.4': 'Confident',
    '0.6': 'Balanced',
    '0.8': 'Flexible',
    '1.0': 'Creative',
    }
class LocalReranker(BaseDocumentCompressor):
    model: Any
    top_n: int = 5

    class Config:
        arbitrary_types_allowed = True

    def compress_documents(self, documents: Sequence[Document], query: str,
                           callbacks=None) -> Sequence[Document]:
        if not documents:
            return []
        pairs = [[query, doc.page_content] for doc in documents]
        scores = self.model.predict(pairs, show_progress_bar=False)
        doc_scores = list(zip(documents, scores))
        sorted_doc_scores = sorted(doc_scores, key=lambda x: x[1],
                                   reverse=True)
        top_docs = []
        for (doc, score) in sorted_doc_scores[:self.top_n]:
            doc.metadata['rerank_score'] = float(score)
            top_docs.append(doc)
        return top_docs


def create_optimized_parent_child_chunks(all_docs):
    if not all_docs:
        print ('CHUNKING: No input documents provided!')
        return ([], [], [])

    parent_splitter = RecursiveCharacterTextSplitter(chunk_size=900,
            chunk_overlap=200, separators=['\n\n', '\n', '. ', '! ',
            '? ', '; ', ', ', ' ', ''])
    child_splitter = RecursiveCharacterTextSplitter(chunk_size=350,
            chunk_overlap=80, separators=['\n', '. ', '! ', '? ', '; ',
            ', ', ' ', ''])
    parent_docs = parent_splitter.split_documents(all_docs)
    doc_ids = [str(uuid.uuid4()) for _ in parent_docs]
    child_docs = []

    for (i, parent_doc) in enumerate(parent_docs):
        parent_id = doc_ids[i]
        children = child_splitter.split_documents([parent_doc])
        for (j, child) in enumerate(children):
            child.metadata.update({'doc_id': parent_id,
                                  'chunk_index': j,
                                  'total_chunks': len(children),
                                  'is_first_chunk': j == 0,
                                  'is_last_chunk': j == len(children)
                                  - 1})
            if len(children) > 1:
                if j == 0:
                    child.page_content = '[Beginning] ' + child.page_content
                elif j == len(children) - 1:
                    child.page_content = '[Continues...] '  + child.page_content
            child_docs.append(child)

    print (f"CHUNKING: Created {len(parent_docs)} parent and {len(child_docs)} child chunks."
           )
    return (parent_docs, child_docs, doc_ids)
def get_context_aware_parents(docs: List[Document], store: InMemoryStore) -> List[Document]:
    if not docs:
        return []
    (parent_scores, child_content_by_parent) = ({}, {})
    for doc in docs:
        parent_id = doc.metadata.get('doc_id')
        if parent_id:
            parent_scores[parent_id] = parent_scores.get(parent_id, 0) \
                + 1
            if parent_id not in child_content_by_parent:
                child_content_by_parent[parent_id] = []
            child_content_by_parent[parent_id].append(doc.page_content)

    parent_ids = list(parent_scores.keys())
    parents = store.mget(parent_ids)
    enhanced_parents = []

    for (i, parent) in enumerate(parents):
        if parent is not None:
            parent_id = parent_ids[i]
            if parent_id in child_content_by_parent:
                child_excerpts = '\n'.join(child_content_by_parent[parent_id][:3])
                enhanced_content = f"{parent.page_content}\n\nRelevant excerpts:\n{child_excerpts}"
                enhanced_parent =Document(page_content=enhanced_content,
                             metadata={**parent.metadata,
                             'child_relevance_score': parent_scores[parent_id],
                             'matching_children': len(child_content_by_parent[parent_id])})
                enhanced_parents.append(enhanced_parent)
        else:
            print (f"PARENT_FETCH: Parent {parent_ids[i]} not found in store!")

    enhanced_parents.sort(key=lambda p: p.metadata.get('child_relevance_score', 0), reverse=True)
    return enhanced_parents


is_hf_spaces = bool(os.getenv('SPACE_ID') or os.getenv('SPACES_ZERO_GPU'
                     ))
app.config['UPLOAD_FOLDER'] = '/tmp/uploads' if is_hf_spaces else 'uploads'

try:
    os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
    print (f"Upload folder ready: {app.config['UPLOAD_FOLDER']}")
except Exception as e:
    print (f"Failed to create upload folder, falling back to /tmp: {e}")
    app.config['UPLOAD_FOLDER'] = '/tmp/uploads'
    os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

session_data = {}
message_histories = {}

print ('Loading embedding model...')
try:
    EMBEDDING_MODEL = \
        HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'
                              , model_kwargs={'device': 'cpu'},
                              encode_kwargs={'normalize_embeddings': True})
    print ('Embedding model loaded.')
except Exception as e:
    print (f"FATAL: Could not load embedding model. Error: {e}")
    raise e

print ('Loading reranker model...')
try:
    RERANKER_MODEL = \
        CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2',
                     device='cpu')
    print ('Reranker model loaded.')
except Exception as e:
    print (f"FATAL: Could not load reranker model. Error: {e}")
    raise e


def load_pdf_with_fallback(filepath):
    try:
        docs = []
        with fitz.open(filepath) as pdf_doc:
            for (page_num, page) in enumerate(pdf_doc):
                text = page.get_text()
                if text.strip():
                    docs.append(Document(page_content=text,
                                metadata={'source': os.path.basename(filepath),
                                'page': page_num + 1}))
        if docs:
            print (f"Loaded PDF: {os.path.basename(filepath)} - {len(docs)} pages"
                   )
            return docs
        else:
            raise ValueError('No text content found in PDF.')
    except Exception as e:
        print (f"PyMuPDF failed for {filepath}: {e}")
        raise


LOADER_MAPPING = {'.txt': TextLoader, '.pdf': load_pdf_with_fallback,
                  '.docx': Docx2txtLoader}


def get_session_history(session_id: str) -> ChatMessageHistory:
    if session_id not in message_histories:
        message_histories[session_id] = ChatMessageHistory()
    return message_histories[session_id]


@app.route('/health', methods=['GET'])
def health_check():
    return (jsonify({'status': 'healthy'}), 200)


@app.route('/', methods=['GET'])
def index():
    return render_template('index.html')


@app.route('/upload', methods=['POST'])
def upload_files():
    files = request.files.getlist('file')

    temperature_str = request.form.get('temperature', '0.2')
    temperature = float(temperature_str)
    model_name = request.form.get('model_name',
                                  'moonshotai/kimi-k2-instruct')
    print (f"UPLOAD: Model: {model_name}, Temp: {temperature}")

    if not files or all(f.filename == '' for f in files):
        return (jsonify({'status': 'error',
                'message': 'No selected files.'}), 400)

    (all_docs, processed_files, failed_files) = ([], [], [])
    print (f"Processing {len(files)} file(s)...")
    for file in files:
        if file and file.filename:
            filename = secure_filename(file.filename)
            filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
            try:
                file.save(filepath)
                file_ext = os.path.splitext(filename)[1].lower()
                if file_ext not in LOADER_MAPPING:
                    raise ValueError('Unsupported file format.')
                loader_func = LOADER_MAPPING[file_ext]
                docs = loader_func(filepath) if file_ext == '.pdf' \
                    else loader_func(filepath).load()
                if not docs:
                    raise ValueError('No content extracted.')
                all_docs.extend(docs)
                processed_files.append(filename)
            except Exception as e:
                print (f"✗ Error processing {filename}: {e}")
                failed_files.append(f"{filename} ({e})")

    if not all_docs:
        return (jsonify({'status': 'error',
                'message': f"Failed to process all files. Reasons: {', '.join(failed_files)}"
                }), 400)

    print (f"UPLOAD: Processed {len(processed_files)} files.")
    try:
        print ('Starting RAG pipeline setup...')
        (parent_docs, child_docs, doc_ids) = \
            create_optimized_parent_child_chunks(all_docs)
        if not child_docs:
            raise ValueError('No child documents created during chunking.')

        vectorstore = FAISS.from_documents(child_docs, EMBEDDING_MODEL)
        store = InMemoryStore()
        store.mset(list(zip(doc_ids, parent_docs)))
        print (f"Indexed {len(child_docs)} document chunks.")

        bm25_retriever = BM25Retriever.from_documents(child_docs)
        bm25_retriever.k = 12
        faiss_retriever = vectorstore.as_retriever(search_kwargs={'k': 12})
        ensemble_retriever = \
            EnsembleRetriever(retrievers=[bm25_retriever,
                               faiss_retriever], weights=[0.6, 0.4])
        reranker = LocalReranker(model=RERANKER_MODEL, top_n=5)

        def get_parents(docs: List[Document]) -> List[Document]:
            return get_context_aware_parents(docs, store)

        compression_retriever = \
            ContextualCompressionRetriever(base_compressor=reranker,
                base_retriever=ensemble_retriever)
        final_retriever = compression_retriever | get_parents

        session_id = str(uuid.uuid4())
        (rag_chain, api_key_manager) = \
            create_rag_chain(retriever=final_retriever,
                             get_session_history_func=get_session_history,
                             model_name=model_name,
                             temperature=temperature)

        session_data[session_id] = {'chain': rag_chain,
                                    'model_name': model_name,
                                    'temperature': temperature,
                                    'api_key_manager': api_key_manager}

        success_msg = f"Processed: {', '.join(processed_files)}"
        if failed_files:
            success_msg += f". Failed: {', '.join(failed_files)}"

        mode_label = TEMPERATURE_LABELS.get(temperature_str,
                temperature_str)

        print (f"UPLOAD COMPLETE: Session {session_id} is ready.")

        return jsonify({
            'status': 'success',
            'filename': success_msg,
            'session_id': session_id,
            'model_name': model_name,
            'mode': mode_label,
            })
    except Exception as e:
        import traceback
        traceback.print_exc()
        return (jsonify({'status': 'error',
                'message': f'RAG setup failed: {e}'}), 500)

@app.route('/chat', methods=['POST', 'GET'])
def chat():
    if request.method == 'GET':
        question = request.args.get('question')
        session_id = request.args.get('session_id')
        print(f"Received GET request for chat: session={session_id}, question={question[:50]}...")
    elif request.method == 'POST':
        data = request.get_json()
        question = data.get('question')
        session_id = data.get('session_id') or session.get('session_id')
        print(f"Received POST request for chat: session={session_id}, question={question[:50]}...")
    else:
        return (jsonify({'status': 'error', 'message': 'Method not allowed'}), 405)

    if not question:
        error_msg = "Error: No question provided."
        print(f"CHAT Validation Error: {error_msg}")
        if request.method == 'GET':
            def error_stream():
                yield f'data: {{"error": "{error_msg}"}}\n\n'
            return Response(stream_with_context(error_stream()), mimetype='text/event-stream', status=400)
        return jsonify({'status': 'error','message': error_msg}), 400

    if not session_id or session_id not in session_data:
        error_msg = "Error: Invalid session. Please upload documents first."
        print(f"CHAT Validation Error: Invalid session {session_id}.")
        if request.method == 'GET':
            def error_stream():
                yield f'data: {{"error": "{error_msg}"}}\n\n'
            return Response(stream_with_context(error_stream()), mimetype='text/event-stream', status=400)
        return jsonify({'status': 'error', 'message': error_msg }), 400
    try:
        session_info = session_data[session_id]
        rag_chain = session_info['chain']
        model_name = session_info['model_name']
        temperature_float = session_info['temperature']
        temperature_str = str(temperature_float)
        mode_label = TEMPERATURE_LABELS.get(temperature_str, temperature_str)

        print (f"CHAT: Streaming response for session {session_id} (Model: {model_name}, Temp: {temperature_float})...")

        def generate_chunks():
            full_response = ''
            try:
                stream_iterator = rag_chain.stream({'question': question},
                        config={'configurable': {'session_id': session_id}})

                for chunk in stream_iterator:
                    if isinstance(chunk, str):
                        full_response += chunk
                        token_escaped = chunk.replace('\\', '\\\\').replace('"', '\\"').replace('\n', '\\n')
                        model_name_escaped = model_name.replace('"', '\\"')
                        mode_label_escaped = mode_label.replace('"', '\\"')
                        yield f'data: {{"token": "{token_escaped}", "model_name": "{model_name_escaped}", "mode": "{mode_label_escaped}"}}\n\n'
                    else:
                        print(f"Received non-string chunk: {type(chunk)}")


                print ('CHAT: Streaming finished successfully.')

            except Exception as e:
                print(f"CHAT Error during streaming generation: {e}")
                import traceback
                traceback.print_exc()
                error_msg = f"Error during response generation: {str(e)}".replace('\\', '\\\\').replace('"', '\\"').replace('\n', '\\n')
                yield f'data: {{"error": "{error_msg}"}}\n\n'
        return Response(stream_with_context(generate_chunks()), mimetype='text/event-stream')

    except Exception as e:
        print(f"CHAT Setup Error: {e}")
        import traceback
        traceback.print_exc()
        error_msg = f"Error setting up chat stream: {str(e)}"
        if request.method == 'GET':
             def error_stream():
                clean_error_msg= error_msg.replace("\"", "\\\"").replace("n", "\\n")
                yield f'data: {{"error": "{clean_error_msg}"}}\n\n'
             return Response(stream_with_context(error_stream()), mimetype='text/event-stream', status=500)
        return (jsonify({'status': 'error', 'message': error_msg}), 500)


def clean_markdown_for_tts(text: str) -> str:
    text = re.sub(r'\[.*?\]\(.*?\)', '', text)
    text = re.sub(r'[`*_#]', '', text)
    text = re.sub(r'^\s*[\-\*\+]\s+', '', text, flags=re.MULTILINE) 
    text = re.sub(r'^\s*\d+\.\s+', '', text, flags=re.MULTILINE) 
    text = re.sub(r'^\s*>\s?', '', text, flags=re.MULTILINE) 
    text = re.sub(r'\n+', ' ', text) 
    text = re.sub(r'\s{2,}', ' ', text)
    return text.strip()


@app.route('/tts', methods=['POST'])
def text_to_speech():
    data = request.get_json()
    text = data.get('text')
    if not text:
        return (jsonify({'status': 'error',
                'message': 'No text provided.'}), 400)
    try:
        clean_text = clean_markdown_for_tts(text)
        if not clean_text:
             return (jsonify({'status': 'error', 'message': 'No speakable text found.'}), 400)

        tts = gTTS(clean_text, lang='en')
        mp3_fp = io.BytesIO()
        tts.write_to_fp(mp3_fp)
        mp3_fp.seek(0)
        return Response(mp3_fp, mimetype='audio/mpeg')
    except Exception as e:
        print (f"TTS Error: {e}")
        return (jsonify({'status': 'error',
                'message': 'Failed to generate audio.'}), 500)


if __name__ == '__main__':
    port = int(os.environ.get('PORT', 7860))
    print (f"Starting Flask app on port {port}")
    app.run(host='0.0.0.0', port=port, debug=False, threaded=True)