Update app.py
Browse files
app.py
CHANGED
|
@@ -1,61 +1,393 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import hf_hub_download, HfFolder
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import requests, torch
|
| 5 |
import numpy as np
|
| 6 |
-
from io import BytesIO
|
| 7 |
import plotly.graph_objects as go
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pickle import FALSE
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
+
from sam2point import dataset
|
| 6 |
+
import sam2point.configs as configs
|
| 7 |
+
from demo_utils import run_demo, create_box
|
| 8 |
+
# Sample data for dropdowns
|
| 9 |
+
samples = {
|
| 10 |
+
"3D Indoor Scene - S3DIS": ["Conference Room", "Restroom", "Lobby", "Office1", "Office2"],
|
| 11 |
+
# "3D Indoor Scene - ScanNet": ["Scene1", "Scene2", "Scene3", "Scene4", "Scene5"],
|
| 12 |
+
"3D Indoor Scene - ScanNet": ["Scene1", "Scene2", "Scene3", "Scene4", "Scene5", "Scene6"],
|
| 13 |
+
"3D Outdoor Driving Scene - KITTI": ["Scene1", "Scene2", "Scene3", "Scene4", "Scene5", "Scene6"],
|
| 14 |
+
"3D Outdoor Street Scene - Semantic3D": ["Scene1", "Scene2", "Scene3", "Scene4", "Scene5", "Scene6", "Scene7"],
|
| 15 |
+
"3D Object - Objaverse": ["Plant", "Lego", "Lock", "Eleplant", "Knife Rest", "Skateboard", "Popcorn Machine", "Stove", "Bus Shelter", "Thor Hammer", "Horse"],
|
| 16 |
+
# "3D Object - Objaverse": ["Plant", "Eleplant", "Knife Rest", "Skateboard", "Popcorn Machine", "Stove", "Bus Shelter", "Thor Hammer", "Horse", "Dinner Booth"],
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
PATH = {
|
| 21 |
+
"S3DIS": ['Area_1_conferenceRoom_1.txt', 'Area_2_WC_1.txt', 'Area_4_lobby_2.txt', 'Area_5_office_3.txt', 'Area_6_office_9.txt'],
|
| 22 |
+
# "ScanNet": ['scene0001_01.pth', 'scene0005_01.pth', 'scene0010_01.pth', 'scene0016_02.pth', 'scene0019_01.pth'],
|
| 23 |
+
"ScanNet": ['scene0005_01.pth', 'scene0010_01.pth', 'scene0016_02.pth', 'scene0019_01.pth', 'scene0000_00.pth', 'scene0002_00.pth'],
|
| 24 |
+
"Objaverse": ["plant.npy", "human.npy", "lock.npy", "elephant.npy", "knife_rest.npy", "skateboard.npy", "popcorn_machine.npy", "stove.npy", "bus_shelter.npy", "thor_hammer.npy", "horse.npy"],
|
| 25 |
+
# "Objaverse": ["plant.npy", "elephant.npy", "knife_rest.npy", "skateboard.npy", "popcorn_machine.npy", "stove.npy", "bus_shelter.npy", "thor_hammer.npy", "horse.npy", "dinner_booth.npy"],
|
| 26 |
+
"KITTI": ["scene1.npy", "scene2.npy", "scene3.npy", "scene4.npy", "scene5.npy", "scene6.npy"],
|
| 27 |
+
"Semantic3D": ["scene1.npy", "scene2.npy", "patch19.npy", "patch0.npy", "patch1.npy", "patch50.npy", "patch62.npy"]
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
prompt_types = ["Point", "Box", "Mask"]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# def select(name, sample_idx):
|
| 35 |
+
# DATASET = name.split('-')[1].replace(" ", "")
|
| 36 |
+
# gr.Info(f"Visualizing {DATASET} Example {str(sample_idx)}...")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Function to load and display 3D scene or object
|
| 42 |
+
def load_3d_scene(name, sample_idx=-1, type_=None, prompt=None, final=False, new_color=None):
|
| 43 |
+
DATASET = name.split('-')[1].replace(" ", "")
|
| 44 |
+
path = 'data/' + DATASET + '/' + PATH[DATASET][sample_idx]
|
| 45 |
+
asp, SIZE = 1., 1
|
| 46 |
+
# load data
|
| 47 |
+
print(path)
|
| 48 |
+
if DATASET == 'S3DIS':
|
| 49 |
+
point, color = dataset.load_S3DIS_sample(path, sample=True)
|
| 50 |
+
alpha = 1
|
| 51 |
+
elif DATASET == 'ScanNet':
|
| 52 |
+
point, color = dataset.load_ScanNet_sample(path)
|
| 53 |
+
alpha = 1
|
| 54 |
+
elif DATASET == 'Objaverse':
|
| 55 |
+
point, color = dataset.load_Objaverse_sample(path)
|
| 56 |
+
alpha = 1
|
| 57 |
+
SIZE = 2
|
| 58 |
+
elif DATASET == 'KITTI':
|
| 59 |
+
point, color = dataset.load_KITTI_sample(path)
|
| 60 |
+
asp = 0.3
|
| 61 |
+
alpha = 0.7
|
| 62 |
+
elif DATASET == 'Semantic3D':
|
| 63 |
+
point, color = dataset.load_Semantic3D_sample(path, sample_idx, sample=True)
|
| 64 |
+
alpha = 0.2
|
| 65 |
+
print("Loading Dataset:", DATASET, ", Point Cloud Size:", point.shape)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
##### Initial Showing #####
|
| 69 |
+
if not type_:
|
| 70 |
+
if point.shape[0] > 100000:
|
| 71 |
+
indices = np.random.choice(point.shape[0], 100000, replace=False)
|
| 72 |
+
point = point[indices]
|
| 73 |
+
color = color[indices]
|
| 74 |
+
# #NOTE KITTI
|
| 75 |
+
# mask1 = point[:, 1] <= 0.8
|
| 76 |
+
# mask4 = point[:, 1] >= 0.6
|
| 77 |
+
# mask2 = point[:, 0] >= 0.3
|
| 78 |
+
# mask3 = point[:, 0] <= 0.7
|
| 79 |
+
# mask = mask1 & mask2 & mask3 & mask4
|
| 80 |
+
# point = point[mask]
|
| 81 |
+
# color = color[mask]
|
| 82 |
+
# alpha = 1
|
| 83 |
+
# ######
|
| 84 |
+
fig = go.Figure(
|
| 85 |
+
data=[
|
| 86 |
+
go.Scatter3d(
|
| 87 |
+
x=point[:,0], y=point[:,1], z=point[:,2],
|
| 88 |
+
mode='markers',
|
| 89 |
+
marker=dict(size=SIZE, color=color, opacity=alpha),
|
| 90 |
+
name=""
|
| 91 |
+
)
|
| 92 |
+
],
|
| 93 |
+
layout=dict(
|
| 94 |
+
scene=dict(
|
| 95 |
+
xaxis=dict(visible=False),
|
| 96 |
+
yaxis=dict(visible=False),
|
| 97 |
+
zaxis=dict(visible=False),
|
| 98 |
+
aspectratio=dict(x=1, y=1, z=asp),
|
| 99 |
+
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
|
| 100 |
+
)
|
| 101 |
+
)
|
| 102 |
+
)
|
| 103 |
+
return fig
|
| 104 |
+
##### Final
|
| 105 |
+
if final:
|
| 106 |
+
color = new_color
|
| 107 |
+
green = np.array([[0.1, 0.1, 0.1]])
|
| 108 |
+
add_green = go.Scatter3d(
|
| 109 |
+
x=green[:,0], y=green[:,1], z=green[:,2],
|
| 110 |
+
mode='markers',
|
| 111 |
+
marker=dict(size=0.0001, color='green', opacity=1),
|
| 112 |
+
name="Segmentation Results"
|
| 113 |
+
)
|
| 114 |
+
if type_ == "box":
|
| 115 |
+
if point.shape[0] > 100000:
|
| 116 |
+
indices = np.random.choice(point.shape[0], 100000, replace=False)
|
| 117 |
+
point = point[indices]
|
| 118 |
+
color = color[indices]
|
| 119 |
+
# mask = point[:, 1] < 0.8
|
| 120 |
+
# point = point[mask]
|
| 121 |
+
# color = color[mask]
|
| 122 |
+
# alpha = 1
|
| 123 |
+
scatter = go.Scatter3d(
|
| 124 |
+
x=point[:,0], y=point[:,1], z=point[:,2],
|
| 125 |
+
mode='markers',
|
| 126 |
+
marker=dict(size=SIZE, color=color, opacity=alpha),
|
| 127 |
+
name="3D Object/Scene"
|
| 128 |
+
)
|
| 129 |
+
if final: scatter = [scatter, add_green] + create_box(prompt)
|
| 130 |
+
else: scatter = [scatter] + create_box(prompt)
|
| 131 |
+
|
| 132 |
+
elif type_ == "point":
|
| 133 |
+
prompt = np.array([prompt])
|
| 134 |
+
new = go.Scatter3d(
|
| 135 |
+
x=prompt[:,0], y=prompt[:,1], z=prompt[:,2],
|
| 136 |
+
mode='markers',
|
| 137 |
+
# marker=dict(size=5, color='red', opacity=1),
|
| 138 |
+
# marker=dict(size=5, color='rgb(255, 140, 0)', opacity=1),
|
| 139 |
+
marker=dict(size=5, color='rgb(139, 0, 0)', opacity=1),
|
| 140 |
+
name="Point Prompt"
|
| 141 |
+
)
|
| 142 |
+
# print(point.shape, color.shape, new_color.shape)
|
| 143 |
+
if point.shape[0] > 100000:
|
| 144 |
+
indices = np.random.choice(point.shape[0], 100000, replace=False)
|
| 145 |
+
point = point[indices]
|
| 146 |
+
color = color[indices]
|
| 147 |
+
# #NOTE KITTI
|
| 148 |
+
# mask1 = point[:, 1] <= 0.8
|
| 149 |
+
# mask = point[:, 1] >= 0.35 #2
|
| 150 |
+
# < 0.63 #3
|
| 151 |
+
# mask2 = point[:, 0] >= 0.3
|
| 152 |
+
# mask3 = point[:, 0] <= 0.7
|
| 153 |
+
# mask = mask1 & mask2 & mask3 & mask4
|
| 154 |
+
# #NOTE S3DIS
|
| 155 |
+
# if DATASET == 'S3DIS':
|
| 156 |
+
# mask = point[:, 0] > 0.04
|
| 157 |
+
# point = point[mask]
|
| 158 |
+
# color = color[mask]
|
| 159 |
+
# alpha = 1
|
| 160 |
+
# ######
|
| 161 |
+
scatter = go.Scatter3d(
|
| 162 |
+
x=point[:,0], y=point[:,1], z=point[:,2],
|
| 163 |
+
mode='markers',
|
| 164 |
+
marker=dict(size=SIZE, color=color, opacity=alpha),
|
| 165 |
+
name="3D Object/Scene"
|
| 166 |
+
)
|
| 167 |
+
if final: scatter = [scatter, new, add_green]
|
| 168 |
+
else: scatter = [scatter, new]
|
| 169 |
+
elif type_ == 'mask' and not final:
|
| 170 |
+
color = np.clip(prompt * 255, 0, 255).astype(np.uint8)
|
| 171 |
+
if point.shape[0] > 100000:
|
| 172 |
+
indices = np.random.choice(point.shape[0], 100000, replace=False)
|
| 173 |
+
point = point[indices]
|
| 174 |
+
color = color[indices]
|
| 175 |
+
scatter = go.Scatter3d(
|
| 176 |
+
x=point[:,0], y=point[:,1], z=point[:,2],
|
| 177 |
+
mode='markers',
|
| 178 |
+
marker=dict(size=SIZE, color=color, opacity=alpha),
|
| 179 |
+
name="3D Object/Scene"
|
| 180 |
+
)
|
| 181 |
+
red = np.array([[0.1, 0.1, 0.1]])
|
| 182 |
+
add_red = go.Scatter3d(
|
| 183 |
+
x=red[:,0], y=red[:,1], z=red[:,2],
|
| 184 |
+
mode='markers',
|
| 185 |
+
marker=dict(size=0.0001, color='red', opacity=1),
|
| 186 |
+
name="Mask Prompt"
|
| 187 |
+
)
|
| 188 |
+
scatter = [scatter, add_red]
|
| 189 |
+
elif type_ == 'mask' and final:
|
| 190 |
+
if point.shape[0] > 100000:
|
| 191 |
+
indices = np.random.choice(point.shape[0], 100000, replace=False)
|
| 192 |
+
point = point[indices]
|
| 193 |
+
color = color[indices]
|
| 194 |
+
# # cut
|
| 195 |
+
# mask = point[:, 0] > 0.1
|
| 196 |
+
# point = point[mask]
|
| 197 |
+
# color = color[mask]
|
| 198 |
+
# alpha = 1
|
| 199 |
+
# ######
|
| 200 |
+
scatter = go.Scatter3d(
|
| 201 |
+
x=point[:,0], y=point[:,1], z=point[:,2],
|
| 202 |
+
mode='markers',
|
| 203 |
+
marker=dict(size=SIZE, color=color, opacity=alpha),
|
| 204 |
+
name="3D Object/Scene"
|
| 205 |
+
)
|
| 206 |
+
scatter = [scatter, add_green]
|
| 207 |
+
print(point.shape, color.shape)
|
| 208 |
+
else:
|
| 209 |
+
print("Wrong Prompt Type")
|
| 210 |
+
exit(1)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
fig = go.Figure(
|
| 214 |
+
data=scatter,
|
| 215 |
+
layout=dict(
|
| 216 |
+
scene=dict(
|
| 217 |
+
xaxis=dict(visible=False),
|
| 218 |
+
yaxis=dict(visible=False),
|
| 219 |
+
zaxis=dict(visible=False),
|
| 220 |
+
aspectratio=dict(x=1, y=1, z=asp),
|
| 221 |
+
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
|
| 222 |
+
)
|
| 223 |
+
)
|
| 224 |
+
)
|
| 225 |
+
return fig
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# Function to display prompt in 3D
|
| 231 |
+
def show_prompt_in_3d(name, sample_idx, prompt_type, prompt_idx):
|
| 232 |
+
DATASET = name.split('-')[1].replace(" ", "")
|
| 233 |
+
TYPE = prompt_type.lower()
|
| 234 |
+
theta = 0. if DATASET in "S3DIS ScanNet" else 0.5
|
| 235 |
+
mode = "bilinear" if DATASET in "S3DIS ScanNet" else 'nearest'
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
prompt = run_demo(DATASET, TYPE, sample_idx, prompt_idx, 0.02, theta, mode, ret_prompt=True)
|
| 239 |
+
fig = load_3d_scene(name, sample_idx, TYPE, prompt)
|
| 240 |
+
return fig
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
# Function to start segmentation
|
| 246 |
+
def start_segmentation(name=None, sample_idx=None, prompt_type=None, prompt_idx=None, vx=0.02):
|
| 247 |
+
if name == None or sample_idx == None or prompt_type == None or prompt_idx == None:
|
| 248 |
+
return gr.Plot(), gr.Textbox(label="Response", value="Please ensure all options are selected.", visible=True)
|
| 249 |
+
|
| 250 |
+
DATASET = name.split('-')[1].replace(" ", "")
|
| 251 |
+
TYPE = prompt_type.lower()
|
| 252 |
+
theta = 0. if DATASET in "S3DIS ScanNet" else 0.5
|
| 253 |
+
mode = "bilinear" if DATASET in "S3DIS ScanNet" else 'nearest'
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
new_color, prompt = run_demo(DATASET, TYPE, sample_idx, prompt_idx, vx, theta, mode, ret_prompt=False)
|
| 257 |
+
fig = load_3d_scene(name, sample_idx, TYPE, prompt, final=True, new_color=new_color)
|
| 258 |
+
return fig, gr.Textbox(label="Response", value="Segmentation completed successfully!", visible=True)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def update1(datasets):
|
| 264 |
+
if 'Objaverse' in datasets:
|
| 265 |
+
return gr.Radio(label="Select 3D Object", choices=samples[datasets]), gr.Textbox(label="Response", value="", visible=True) #, gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=0.02)
|
| 266 |
+
return gr.Radio(label="Select 3D Scene", choices=samples[datasets]), gr.Textbox(label="Response", value="", visible=True) #, gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=0.02)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def update2(name, sample_idx, prompt_type):
|
| 270 |
+
if name == None or sample_idx == None or prompt_type == None:
|
| 271 |
+
return gr.Radio(label="Select Prompt Example", choices=[]), gr.Textbox(label="Response", value="", visible=True) #, gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=0.02)
|
| 272 |
+
DATASET = name.split('-')[1].replace(" ", "")
|
| 273 |
+
TYPE = prompt_type.lower() + '_prompts'
|
| 274 |
+
# if DATASET in "ScanNet" and prompt_type == 'Mask': TYPE = 'point_prompts'
|
| 275 |
+
if DATASET == 'S3DIS':
|
| 276 |
+
info = configs.S3DIS_samples[sample_idx][TYPE]
|
| 277 |
+
elif DATASET == 'ScanNet':
|
| 278 |
+
info = configs.ScanNet_samples[sample_idx][TYPE]
|
| 279 |
+
elif DATASET == 'Objaverse':
|
| 280 |
+
info = configs.Objaverse_samples[sample_idx][TYPE]
|
| 281 |
+
elif DATASET == 'KITTI':
|
| 282 |
+
info = configs.KITTI_samples[sample_idx][TYPE]
|
| 283 |
+
elif DATASET == 'Semantic3D':
|
| 284 |
+
info = configs.Semantic3D_samples[sample_idx][TYPE]
|
| 285 |
+
|
| 286 |
+
cur = ['Example ' + str(i) for i in range(1, len(info) + 1)]
|
| 287 |
+
return gr.Radio(label="Select Prompt Example", choices=cur), gr.Textbox(label="Response", value="", visible=True) #, gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=0.02)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def update3(name, sample_idx, prompt_type, prompt_idx):
|
| 291 |
+
if name == None or sample_idx == None or prompt_type == None:
|
| 292 |
+
return gr.Textbox(label="Response", value="", visible=True), gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=0.02)
|
| 293 |
+
DATASET = name.split('-')[1].replace(" ", "")
|
| 294 |
+
TYPE = configs.VOXEL[prompt_type.lower()]
|
| 295 |
+
if DATASET in "S3DIS ScanNet":
|
| 296 |
+
vx_ = 0.02
|
| 297 |
+
elif DATASET == 'Objaverse':
|
| 298 |
+
vx_ = configs.Objaverse_samples[sample_idx][TYPE][prompt_idx]
|
| 299 |
+
elif DATASET == 'KITTI':
|
| 300 |
+
vx_ = configs.KITTI_samples[sample_idx][TYPE][prompt_idx]
|
| 301 |
+
elif DATASET == 'Semantic3D':
|
| 302 |
+
vx_ = configs.Semantic3D_samples[sample_idx][TYPE][prompt_idx]
|
| 303 |
+
|
| 304 |
+
return gr.Textbox(label="Response", value="", visible=True), gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=vx_)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def main():
|
| 308 |
+
title = """<h1 style="font-variant: small-caps; font-weight: bold; text-align: center;" align="center">SAM2Point</h1>
|
| 309 |
+
<h3 align="center"><b>Segment Any 3D as Videos in Zero-shot and Promptable Manners</h3>
|
| 310 |
+
<br>
|
| 311 |
+
"""
|
| 312 |
+
title = """
|
| 313 |
+
<h1 style="text-align: center;">
|
| 314 |
+
<div style="width: 1.2em; height: 1.2em; display: inline-block;"><img src="https://github.com/ZiyuGuo99/ZiyuGuo99.github.io/blob/main/assets/img/logo.png?raw=true" style='width: 100%; height: 100%; object-fit: contain;' /></div>
|
| 315 |
+
<span style="font-variant: small-caps; font-weight: bold;">Sam2Point</span>
|
| 316 |
+
</h1>
|
| 317 |
+
<h3 align="center"><span style="font-variant: small-caps; ">Segment Any 3D as Videos in Zero-shot and Promptable Manners
|
| 318 |
+
</span></h3>"""
|
| 319 |
+
|
| 320 |
+
with gr.Blocks(
|
| 321 |
+
css="""
|
| 322 |
+
.contain { display: flex; flex-direction: column; }
|
| 323 |
+
.gradio-container { height: 100vh !important; }
|
| 324 |
+
#col_container { height: 100%; }
|
| 325 |
+
pre {
|
| 326 |
+
white-space: pre-wrap; /* Since CSS 2.1 */
|
| 327 |
+
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
|
| 328 |
+
white-space: -pre-wrap; /* Opera 4-6 */
|
| 329 |
+
white-space: -o-pre-wrap; /* Opera 7 */
|
| 330 |
+
word-wrap: break-word; /* Internet Explorer 5.5+ */
|
| 331 |
+
}""",
|
| 332 |
+
js="""
|
| 333 |
+
function refresh() {
|
| 334 |
+
const url = new URL(window.location);
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
| 338 |
+
url.searchParams.set('__theme', 'light');
|
| 339 |
+
window.location.href = url.href;
|
| 340 |
+
}
|
| 341 |
+
}""",
|
| 342 |
+
title="SAM2Point: Segment Any 3D as Videos in Zero-shot and Promptable Manners",
|
| 343 |
+
theme=gr.themes.Soft()
|
| 344 |
+
) as app:
|
| 345 |
+
gr.HTML(title)
|
| 346 |
+
with gr.Row():
|
| 347 |
+
with gr.Column(elem_id="col_container"):
|
| 348 |
+
sample_dropdown = gr.Dropdown(label="Select 3D Data Type", choices=samples, type="value")
|
| 349 |
+
scene_dropdown = gr.Radio(label="Select 3D Object/Scene", choices=[], type="index")
|
| 350 |
+
show_button = gr.Button("Show 3D Scene/Object")
|
| 351 |
+
prompt_type_dropdown = gr.Radio(label="Select Prompt Type", choices=prompt_types)
|
| 352 |
+
prompt_sample_dropdown = gr.Radio(label="Select Prompt Example", choices=[], type="index")
|
| 353 |
+
show_prompt_button = gr.Button("Show Prompt in 3D Scene/Object")
|
| 354 |
+
# show_button.input(select, [sample_dropdown, scene_dropdown], [])
|
| 355 |
+
with gr.Column():
|
| 356 |
+
# vx = gr.Slider(minimum=0.01, maximum=0.15, step=0.001, label="Voxel Size", value=0.02)
|
| 357 |
+
start_segment_button = gr.Button("Start Segmentation")
|
| 358 |
+
plot1 = gr.Plot()
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
response = gr.Textbox(label="Response")
|
| 364 |
+
|
| 365 |
+
sample_dropdown.change(update1, sample_dropdown, [scene_dropdown, response])
|
| 366 |
+
sample_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response])
|
| 367 |
+
scene_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response])
|
| 368 |
+
prompt_type_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response])
|
| 369 |
+
|
| 370 |
+
# sample_dropdown.change(update1, sample_dropdown, [scene_dropdown, response, vx])
|
| 371 |
+
# sample_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response, vx])
|
| 372 |
+
# scene_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response, vx])
|
| 373 |
+
# prompt_type_dropdown.change(update2, [sample_dropdown, scene_dropdown, prompt_type_dropdown], [prompt_sample_dropdown, response, vx])
|
| 374 |
+
# prompt_sample_dropdown.change(update3, [sample_dropdown, scene_dropdown, prompt_type_dropdown, prompt_sample_dropdown], [response, vx])
|
| 375 |
+
|
| 376 |
+
# Logic to handle interactions
|
| 377 |
+
show_button.click(load_3d_scene, inputs=[sample_dropdown, scene_dropdown], outputs=plot1)
|
| 378 |
+
show_prompt_button.click(show_prompt_in_3d, inputs=[sample_dropdown, scene_dropdown, prompt_type_dropdown, prompt_sample_dropdown], outputs=plot1)
|
| 379 |
+
# start_segment_button.click(start_segmentation, inputs=[sample_dropdown, scene_dropdown, prompt_type_dropdown, prompt_sample_dropdown, vx], outputs=[plot1, response])
|
| 380 |
+
start_segment_button.click(start_segmentation, inputs=[sample_dropdown, scene_dropdown, prompt_type_dropdown, prompt_sample_dropdown], outputs=[plot1, response])
|
| 381 |
+
|
| 382 |
+
app.queue(status_update_rate="auto")
|
| 383 |
+
app.launch(share=True, favicon_path="./logo.png")
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
if __name__ == "__main__":
|
| 387 |
+
main()
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|