Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
e0e0cdd
1
Parent(s):
96ecc26
Update code token
Browse files
app.py
CHANGED
|
@@ -1,36 +1,101 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
-
import os
|
| 4 |
|
|
|
|
| 5 |
client = InferenceClient(model="RekaAI/reka-flash-3", token=os.getenv("HF_TOKEN"))
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
for
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
response = client.text_generation(
|
| 15 |
-
|
| 16 |
-
max_new_tokens=
|
| 17 |
temperature=temperature,
|
| 18 |
top_p=top_p,
|
| 19 |
top_k=top_k,
|
| 20 |
-
repetition_penalty=
|
| 21 |
-
stop_sequences=["\nHuman:", "\nAssistant:"]
|
|
|
|
| 22 |
)
|
| 23 |
-
|
| 24 |
-
generated_text = response.strip()
|
| 25 |
-
chat_history.append({"role": "user", "content": message})
|
| 26 |
-
chat_history.append({"role": "assistant", "content": generated_text})
|
| 27 |
-
return "", chat_history
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
with gr.Blocks() as demo:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import InferenceClient
|
|
|
|
| 4 |
|
| 5 |
+
# Initialize the Inference Client
|
| 6 |
client = InferenceClient(model="RekaAI/reka-flash-3", token=os.getenv("HF_TOKEN"))
|
| 7 |
|
| 8 |
+
# Helper function to format the conversation history into a prompt
|
| 9 |
+
def format_history(history):
|
| 10 |
+
prompt = "You are a helpful and harmless assistant.\n\n"
|
| 11 |
+
for item in history:
|
| 12 |
+
if item["role"] == "user":
|
| 13 |
+
prompt += f"Human: {item['content']}\n"
|
| 14 |
+
elif item["role"] == "assistant":
|
| 15 |
+
prompt += f"Assistant: {item['content']}\n"
|
| 16 |
+
prompt += "Assistant:"
|
| 17 |
+
return prompt
|
| 18 |
+
|
| 19 |
+
# Function to handle message submission and response generation
|
| 20 |
+
def submit(message, history, temperature, max_new_tokens, top_p, top_k):
|
| 21 |
+
# Add user's message to history
|
| 22 |
+
history = history + [{"role": "user", "content": message}]
|
| 23 |
+
# Add a "Thinking..." message to simulate the model's reasoning phase
|
| 24 |
+
thinking_message = {"role": "assistant", "content": "Thinking..."}
|
| 25 |
+
history = history + [thinking_message]
|
| 26 |
+
yield history, history # Update chatbot and state
|
| 27 |
+
|
| 28 |
+
# Format the prompt excluding the "Thinking..." message
|
| 29 |
+
prompt = format_history(history[:-1])
|
| 30 |
+
# Stream the response from the Inference API
|
| 31 |
response = client.text_generation(
|
| 32 |
+
prompt,
|
| 33 |
+
max_new_tokens=max_new_tokens,
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
top_k=top_k,
|
| 37 |
+
repetition_penalty=1.0,
|
| 38 |
+
stop_sequences=["\nHuman:", "\nAssistant:"],
|
| 39 |
+
stream=True
|
| 40 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# Simulate "thinking" phase with the first 5 chunks
|
| 43 |
+
thought_chunks = 0
|
| 44 |
+
max_thought_chunks = 5
|
| 45 |
+
accumulated_thought = ""
|
| 46 |
+
for chunk in response:
|
| 47 |
+
if thought_chunks < max_thought_chunks:
|
| 48 |
+
accumulated_thought += chunk
|
| 49 |
+
thinking_message["content"] = "Thinking: " + accumulated_thought
|
| 50 |
+
thought_chunks += 1
|
| 51 |
+
if thought_chunks == max_thought_chunks:
|
| 52 |
+
# Finalize the "Thought" message and start the "Answer" message
|
| 53 |
+
thinking_message["content"] = "Thought: " + accumulated_thought
|
| 54 |
+
answer_message = {"role": "assistant", "content": "Answer:"}
|
| 55 |
+
history = history + [answer_message]
|
| 56 |
+
else:
|
| 57 |
+
# Append subsequent chunks to the "Answer" message
|
| 58 |
+
answer_message["content"] += chunk
|
| 59 |
+
yield history, history # Update UI with each chunk
|
| 60 |
+
|
| 61 |
+
# Finalize the response
|
| 62 |
+
if 'answer_message' in locals():
|
| 63 |
+
answer_message["content"] += "\n\n[End of response]"
|
| 64 |
+
else:
|
| 65 |
+
thinking_message["content"] += "\n\n[No response generated]"
|
| 66 |
+
yield history, history
|
| 67 |
+
|
| 68 |
+
# Build the Gradio interface
|
| 69 |
with gr.Blocks() as demo:
|
| 70 |
+
# State to store the conversation history
|
| 71 |
+
history_state = gr.State([])
|
| 72 |
+
# Chatbot component to display messages
|
| 73 |
+
chatbot = gr.Chatbot(type="messages", height=400, label="Conversation")
|
| 74 |
+
|
| 75 |
+
# Layout with settings and input area
|
| 76 |
+
with gr.Row():
|
| 77 |
+
with gr.Column(scale=1):
|
| 78 |
+
# Advanced settings in a collapsible panel
|
| 79 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 80 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7)
|
| 81 |
+
max_tokens = gr.Slider(label="Max Tokens", minimum=1, maximum=1024, step=1, value=512)
|
| 82 |
+
top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.9)
|
| 83 |
+
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, step=1, value=50)
|
| 84 |
+
with gr.Column(scale=4):
|
| 85 |
+
# Textbox for user input and buttons
|
| 86 |
+
textbox = gr.Textbox(label="Your message")
|
| 87 |
+
submit_btn = gr.Button("Submit")
|
| 88 |
+
clear_btn = gr.Button("Clear")
|
| 89 |
+
|
| 90 |
+
# Connect the submit button to the submit function
|
| 91 |
+
submit_btn.click(
|
| 92 |
+
submit,
|
| 93 |
+
inputs=[textbox, history_state, temperature, max_tokens, top_p, top_k],
|
| 94 |
+
outputs=[chatbot, history_state]
|
| 95 |
+
)
|
| 96 |
+
# Clear button resets the conversation
|
| 97 |
+
clear_btn.click(lambda: ([], []), outputs=[chatbot, history_state])
|
| 98 |
|
| 99 |
+
# Launch the application
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
demo.queue().launch()
|