Spaces:
Sleeping
Sleeping
| from fastapi import Body | |
| from sse_starlette.sse import EventSourceResponse | |
| from configs import LLM_MODELS, TEMPERATURE | |
| from server.utils import wrap_done, get_ChatOpenAI | |
| from langchain.chains import LLMChain | |
| from langchain.callbacks import AsyncIteratorCallbackHandler | |
| from typing import AsyncIterable | |
| import asyncio | |
| import json | |
| from langchain.prompts.chat import ChatPromptTemplate | |
| from typing import List, Optional, Union | |
| from server.chat.utils import History | |
| from langchain.prompts import PromptTemplate | |
| from server.utils import get_prompt_template | |
| from server.memory.conversation_db_buffer_memory import ConversationBufferDBMemory | |
| from server.db.repository import add_message_to_db | |
| from server.callback_handler.conversation_callback_handler import ConversationCallbackHandler | |
| async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]), | |
| conversation_id: str = Body("", description="对话框ID"), | |
| history_len: int = Body(-1, description="从数据库中取历史消息的数量"), | |
| history: Union[int, List[History]] = Body([], | |
| description="历史对话,设为一个整数可以从数据库中读取历史消息", | |
| examples=[[ | |
| {"role": "user", | |
| "content": "我们来玩成语接龙,我先来,生龙活虎"}, | |
| {"role": "assistant", "content": "虎头虎脑"}]] | |
| ), | |
| stream: bool = Body(False, description="流式输出"), | |
| model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), | |
| temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=2.0), | |
| max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"), | |
| # top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0), | |
| prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"), | |
| ): | |
| async def chat_iterator() -> AsyncIterable[str]: | |
| nonlocal history, max_tokens | |
| callback = AsyncIteratorCallbackHandler() | |
| callbacks = [callback] | |
| memory = None | |
| # 负责保存llm response到message db | |
| message_id = add_message_to_db(chat_type="llm_chat", query=query, conversation_id=conversation_id) | |
| conversation_callback = ConversationCallbackHandler(conversation_id=conversation_id, message_id=message_id, | |
| chat_type="llm_chat", | |
| query=query) | |
| callbacks.append(conversation_callback) | |
| if isinstance(max_tokens, int) and max_tokens <= 0: | |
| max_tokens = None | |
| model = get_ChatOpenAI( | |
| model_name=model_name, | |
| temperature=temperature, | |
| max_tokens=max_tokens, | |
| callbacks=callbacks, | |
| ) | |
| if history: # 优先使用前端传入的历史消息 | |
| history = [History.from_data(h) for h in history] | |
| prompt_template = get_prompt_template("llm_chat", prompt_name) | |
| input_msg = History(role="user", content=prompt_template).to_msg_template(False) | |
| chat_prompt = ChatPromptTemplate.from_messages( | |
| [i.to_msg_template() for i in history] + [input_msg]) | |
| elif conversation_id and history_len > 0: # 前端要求从数据库取历史消息 | |
| # 使用memory 时必须 prompt 必须含有memory.memory_key 对应的变量 | |
| prompt = get_prompt_template("llm_chat", "with_history") | |
| chat_prompt = PromptTemplate.from_template(prompt) | |
| # 根据conversation_id 获取message 列表进而拼凑 memory | |
| memory = ConversationBufferDBMemory(conversation_id=conversation_id, | |
| llm=model, | |
| message_limit=history_len) | |
| else: | |
| prompt_template = get_prompt_template("llm_chat", prompt_name) | |
| input_msg = History(role="user", content=prompt_template).to_msg_template(False) | |
| chat_prompt = ChatPromptTemplate.from_messages([input_msg]) | |
| chain = LLMChain(prompt=chat_prompt, llm=model, memory=memory) | |
| # Begin a task that runs in the background. | |
| task = asyncio.create_task(wrap_done( | |
| chain.acall({"input": query}), | |
| callback.done), | |
| ) | |
| if stream: | |
| async for token in callback.aiter(): | |
| # Use server-sent-events to stream the response | |
| yield json.dumps( | |
| {"text": token, "message_id": message_id}, | |
| ensure_ascii=False) | |
| else: | |
| answer = "" | |
| async for token in callback.aiter(): | |
| answer += token | |
| yield json.dumps( | |
| {"text": answer, "message_id": message_id}, | |
| ensure_ascii=False) | |
| await task | |
| return EventSourceResponse(chat_iterator()) | |