Spaces:
Running
Running
| from langchain.utilities.bing_search import BingSearchAPIWrapper | |
| from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper | |
| from configs import (BING_SEARCH_URL, BING_SUBSCRIPTION_KEY, METAPHOR_API_KEY, | |
| LLM_MODELS, SEARCH_ENGINE_TOP_K, TEMPERATURE, OVERLAP_SIZE) | |
| from langchain.chains import LLMChain | |
| from langchain.callbacks import AsyncIteratorCallbackHandler | |
| from langchain.prompts.chat import ChatPromptTemplate | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.docstore.document import Document | |
| from fastapi import Body | |
| from fastapi.concurrency import run_in_threadpool | |
| from sse_starlette import EventSourceResponse | |
| from server.utils import wrap_done, get_ChatOpenAI | |
| from server.utils import BaseResponse, get_prompt_template | |
| from server.chat.utils import History | |
| from typing import AsyncIterable | |
| import asyncio | |
| import json | |
| from typing import List, Optional, Dict | |
| from strsimpy.normalized_levenshtein import NormalizedLevenshtein | |
| from markdownify import markdownify | |
| def bing_search(text, result_len=SEARCH_ENGINE_TOP_K, **kwargs): | |
| if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY): | |
| return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV", | |
| "title": "env info is not found", | |
| "link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}] | |
| search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY, | |
| bing_search_url=BING_SEARCH_URL) | |
| return search.results(text, result_len) | |
| def duckduckgo_search(text, result_len=SEARCH_ENGINE_TOP_K, **kwargs): | |
| search = DuckDuckGoSearchAPIWrapper() | |
| return search.results(text, result_len) | |
| def metaphor_search( | |
| text: str, | |
| result_len: int = SEARCH_ENGINE_TOP_K, | |
| split_result: bool = False, | |
| chunk_size: int = 500, | |
| chunk_overlap: int = OVERLAP_SIZE, | |
| ) -> List[Dict]: | |
| from metaphor_python import Metaphor | |
| if not METAPHOR_API_KEY: | |
| return [] | |
| client = Metaphor(METAPHOR_API_KEY) | |
| search = client.search(text, num_results=result_len, use_autoprompt=True) | |
| contents = search.get_contents().contents | |
| for x in contents: | |
| x.extract = markdownify(x.extract) | |
| # metaphor 返回的内容都是长文本,需要分词再检索 | |
| if split_result: | |
| docs = [Document(page_content=x.extract, | |
| metadata={"link": x.url, "title": x.title}) | |
| for x in contents] | |
| text_splitter = RecursiveCharacterTextSplitter(["\n\n", "\n", ".", " "], | |
| chunk_size=chunk_size, | |
| chunk_overlap=chunk_overlap) | |
| splitted_docs = text_splitter.split_documents(docs) | |
| # 将切分好的文档放入临时向量库,重新筛选出TOP_K个文档 | |
| if len(splitted_docs) > result_len: | |
| normal = NormalizedLevenshtein() | |
| for x in splitted_docs: | |
| x.metadata["score"] = normal.similarity(text, x.page_content) | |
| splitted_docs.sort(key=lambda x: x.metadata["score"], reverse=True) | |
| splitted_docs = splitted_docs[:result_len] | |
| docs = [{"snippet": x.page_content, | |
| "link": x.metadata["link"], | |
| "title": x.metadata["title"]} | |
| for x in splitted_docs] | |
| else: | |
| docs = [{"snippet": x.extract, | |
| "link": x.url, | |
| "title": x.title} | |
| for x in contents] | |
| return docs | |
| SEARCH_ENGINES = {"bing": bing_search, | |
| "duckduckgo": duckduckgo_search, | |
| "metaphor": metaphor_search, | |
| } | |
| def search_result2docs(search_results): | |
| docs = [] | |
| for result in search_results: | |
| doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "", | |
| metadata={"source": result["link"] if "link" in result.keys() else "", | |
| "filename": result["title"] if "title" in result.keys() else ""}) | |
| docs.append(doc) | |
| return docs | |
| async def lookup_search_engine( | |
| query: str, | |
| search_engine_name: str, | |
| top_k: int = SEARCH_ENGINE_TOP_K, | |
| split_result: bool = False, | |
| ): | |
| search_engine = SEARCH_ENGINES[search_engine_name] | |
| results = await run_in_threadpool(search_engine, query, result_len=top_k, split_result=split_result) | |
| docs = search_result2docs(results) | |
| return docs | |
| async def search_engine_chat(query: str = Body(..., description="用户输入", examples=["你好"]), | |
| search_engine_name: str = Body(..., description="搜索引擎名称", examples=["duckduckgo"]), | |
| top_k: int = Body(SEARCH_ENGINE_TOP_K, description="检索结果数量"), | |
| history: List[History] = Body([], | |
| description="历史对话", | |
| examples=[[ | |
| {"role": "user", | |
| "content": "我们来玩成语接龙,我先来,生龙活虎"}, | |
| {"role": "assistant", | |
| "content": "虎头虎脑"}]] | |
| ), | |
| stream: bool = Body(False, description="流式输出"), | |
| model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), | |
| temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), | |
| max_tokens: Optional[int] = Body(None, | |
| description="限制LLM生成Token数量,默认None代表模型最大值"), | |
| prompt_name: str = Body("default", | |
| description="使用的prompt模板名称(在configs/prompt_config.py中配置)"), | |
| split_result: bool = Body(False, | |
| description="是否对搜索结果进行拆分(主要用于metaphor搜索引擎)") | |
| ): | |
| if search_engine_name not in SEARCH_ENGINES.keys(): | |
| return BaseResponse(code=404, msg=f"未支持搜索引擎 {search_engine_name}") | |
| if search_engine_name == "bing" and not BING_SUBSCRIPTION_KEY: | |
| return BaseResponse(code=404, msg=f"要使用Bing搜索引擎,需要设置 `BING_SUBSCRIPTION_KEY`") | |
| history = [History.from_data(h) for h in history] | |
| async def search_engine_chat_iterator(query: str, | |
| search_engine_name: str, | |
| top_k: int, | |
| history: Optional[List[History]], | |
| model_name: str = LLM_MODELS[0], | |
| prompt_name: str = prompt_name, | |
| ) -> AsyncIterable[str]: | |
| nonlocal max_tokens | |
| callback = AsyncIteratorCallbackHandler() | |
| if isinstance(max_tokens, int) and max_tokens <= 0: | |
| max_tokens = None | |
| model = get_ChatOpenAI( | |
| model_name=model_name, | |
| temperature=temperature, | |
| max_tokens=max_tokens, | |
| callbacks=[callback], | |
| ) | |
| docs = await lookup_search_engine(query, search_engine_name, top_k, split_result=split_result) | |
| context = "\n".join([doc.page_content for doc in docs]) | |
| prompt_template = get_prompt_template("search_engine_chat", prompt_name) | |
| input_msg = History(role="user", content=prompt_template).to_msg_template(False) | |
| chat_prompt = ChatPromptTemplate.from_messages( | |
| [i.to_msg_template() for i in history] + [input_msg]) | |
| chain = LLMChain(prompt=chat_prompt, llm=model) | |
| # Begin a task that runs in the background. | |
| task = asyncio.create_task(wrap_done( | |
| chain.acall({"context": context, "question": query}), | |
| callback.done), | |
| ) | |
| source_documents = [ | |
| f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n""" | |
| for inum, doc in enumerate(docs) | |
| ] | |
| if len(source_documents) == 0: # 没有找到相关资料(不太可能) | |
| source_documents.append(f"""<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>""") | |
| if stream: | |
| async for token in callback.aiter(): | |
| # Use server-sent-events to stream the response | |
| yield json.dumps({"answer": token}, ensure_ascii=False) | |
| yield json.dumps({"docs": source_documents}, ensure_ascii=False) | |
| else: | |
| answer = "" | |
| async for token in callback.aiter(): | |
| answer += token | |
| yield json.dumps({"answer": answer, | |
| "docs": source_documents}, | |
| ensure_ascii=False) | |
| await task | |
| return EventSourceResponse(search_engine_chat_iterator(query=query, | |
| search_engine_name=search_engine_name, | |
| top_k=top_k, | |
| history=history, | |
| model_name=model_name, | |
| prompt_name=prompt_name), | |
| ) | |