Spaces:
Sleeping
Sleeping
| import sys | |
| from fastchat.conversation import Conversation | |
| from server.model_workers.base import * | |
| from server.utils import get_httpx_client | |
| from cachetools import cached, TTLCache | |
| import json | |
| from fastchat import conversation as conv | |
| import sys | |
| from server.model_workers.base import ApiEmbeddingsParams | |
| from typing import List, Literal, Dict | |
| from configs import logger, log_verbose | |
| MODEL_VERSIONS = { | |
| "ernie-bot-4": "completions_pro", | |
| "ernie-bot": "completions", | |
| "ernie-bot-turbo": "eb-instant", | |
| "bloomz-7b": "bloomz_7b1", | |
| "qianfan-bloomz-7b-c": "qianfan_bloomz_7b_compressed", | |
| "llama2-7b-chat": "llama_2_7b", | |
| "llama2-13b-chat": "llama_2_13b", | |
| "llama2-70b-chat": "llama_2_70b", | |
| "qianfan-llama2-ch-7b": "qianfan_chinese_llama_2_7b", | |
| "chatglm2-6b-32k": "chatglm2_6b_32k", | |
| "aquilachat-7b": "aquilachat_7b", | |
| # "linly-llama2-ch-7b": "", # 暂未发布 | |
| # "linly-llama2-ch-13b": "", # 暂未发布 | |
| # "chatglm2-6b": "", # 暂未发布 | |
| # "chatglm2-6b-int4": "", # 暂未发布 | |
| # "falcon-7b": "", # 暂未发布 | |
| # "falcon-180b-chat": "", # 暂未发布 | |
| # "falcon-40b": "", # 暂未发布 | |
| # "rwkv4-world": "", # 暂未发布 | |
| # "rwkv5-world": "", # 暂未发布 | |
| # "rwkv4-pile-14b": "", # 暂未发布 | |
| # "rwkv4-raven-14b": "", # 暂未发布 | |
| # "open-llama-7b": "", # 暂未发布 | |
| # "dolly-12b": "", # 暂未发布 | |
| # "mpt-7b-instruct": "", # 暂未发布 | |
| # "mpt-30b-instruct": "", # 暂未发布 | |
| # "OA-Pythia-12B-SFT-4": "", # 暂未发布 | |
| # "xverse-13b": "", # 暂未发布 | |
| # # 以下为企业测试,需要单独申请 | |
| # "flan-ul2": "", | |
| # "Cerebras-GPT-6.7B": "" | |
| # "Pythia-6.9B": "" | |
| } | |
| # 经过测试,缓存的token可以使用,目前每30分钟刷新一次 | |
| def get_baidu_access_token(api_key: str, secret_key: str) -> str: | |
| """ | |
| 使用 AK,SK 生成鉴权签名(Access Token) | |
| :return: access_token,或是None(如果错误) | |
| """ | |
| url = "https://aip.baidubce.com/oauth/2.0/token" | |
| params = {"grant_type": "client_credentials", "client_id": api_key, "client_secret": secret_key} | |
| try: | |
| with get_httpx_client() as client: | |
| return client.get(url, params=params).json().get("access_token") | |
| except Exception as e: | |
| print(f"failed to get token from baidu: {e}") | |
| class QianFanWorker(ApiModelWorker): | |
| """ | |
| 百度千帆 | |
| """ | |
| DEFAULT_EMBED_MODEL = "embedding-v1" | |
| def __init__( | |
| self, | |
| *, | |
| version: Literal["ernie-bot", "ernie-bot-turbo"] = "ernie-bot", | |
| model_names: List[str] = ["qianfan-api"], | |
| controller_addr: str = None, | |
| worker_addr: str = None, | |
| **kwargs, | |
| ): | |
| kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr) | |
| kwargs.setdefault("context_len", 16384) | |
| super().__init__(**kwargs) | |
| self.version = version | |
| def do_chat(self, params: ApiChatParams) -> Dict: | |
| params.load_config(self.model_names[0]) | |
| BASE_URL = 'https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat' \ | |
| '/{model_version}?access_token={access_token}' | |
| access_token = get_baidu_access_token(params.api_key, params.secret_key) | |
| if not access_token: | |
| yield { | |
| "error_code": 403, | |
| "text": f"failed to get access token. have you set the correct api_key and secret key?", | |
| } | |
| url = BASE_URL.format( | |
| model_version=params.version_url or MODEL_VERSIONS[params.version.lower()], | |
| access_token=access_token, | |
| ) | |
| payload = { | |
| "messages": params.messages, | |
| "temperature": params.temperature, | |
| "stream": True | |
| } | |
| headers = { | |
| 'Content-Type': 'application/json', | |
| 'Accept': 'application/json', | |
| } | |
| text = "" | |
| if log_verbose: | |
| logger.info(f'{self.__class__.__name__}:data: {payload}') | |
| logger.info(f'{self.__class__.__name__}:url: {url}') | |
| logger.info(f'{self.__class__.__name__}:headers: {headers}') | |
| with get_httpx_client() as client: | |
| with client.stream("POST", url, headers=headers, json=payload) as response: | |
| for line in response.iter_lines(): | |
| if not line.strip(): | |
| continue | |
| if line.startswith("data: "): | |
| line = line[6:] | |
| resp = json.loads(line) | |
| if "result" in resp.keys(): | |
| text += resp["result"] | |
| yield { | |
| "error_code": 0, | |
| "text": text | |
| } | |
| else: | |
| data = { | |
| "error_code": resp["error_code"], | |
| "text": resp["error_msg"], | |
| "error": { | |
| "message": resp["error_msg"], | |
| "type": "invalid_request_error", | |
| "param": None, | |
| "code": None, | |
| } | |
| } | |
| self.logger.error(f"请求千帆 API 时发生错误:{data}") | |
| yield data | |
| def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict: | |
| params.load_config(self.model_names[0]) | |
| # import qianfan | |
| # embed = qianfan.Embedding(ak=params.api_key, sk=params.secret_key) | |
| # resp = embed.do(texts = params.texts, model=params.embed_model or self.DEFAULT_EMBED_MODEL) | |
| # if resp.code == 200: | |
| # embeddings = [x.embedding for x in resp.body.get("data", [])] | |
| # return {"code": 200, "embeddings": embeddings} | |
| # else: | |
| # return {"code": resp.code, "msg": str(resp.body)} | |
| embed_model = params.embed_model or self.DEFAULT_EMBED_MODEL | |
| access_token = get_baidu_access_token(params.api_key, params.secret_key) | |
| url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/{embed_model}?access_token={access_token}" | |
| if log_verbose: | |
| logger.info(f'{self.__class__.__name__}:url: {url}') | |
| with get_httpx_client() as client: | |
| result = [] | |
| i = 0 | |
| batch_size = 10 | |
| while i < len(params.texts): | |
| texts = params.texts[i:i + batch_size] | |
| resp = client.post(url, json={"input": texts}).json() | |
| if "error_code" in resp: | |
| data = { | |
| "code": resp["error_code"], | |
| "msg": resp["error_msg"], | |
| "error": { | |
| "message": resp["error_msg"], | |
| "type": "invalid_request_error", | |
| "param": None, | |
| "code": None, | |
| } | |
| } | |
| self.logger.error(f"请求千帆 API 时发生错误:{data}") | |
| return data | |
| else: | |
| embeddings = [x["embedding"] for x in resp.get("data", [])] | |
| result += embeddings | |
| i += batch_size | |
| return {"code": 200, "data": result} | |
| def get_embeddings(self, params): | |
| print("embedding") | |
| print(params) | |
| def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation: | |
| return conv.Conversation( | |
| name=self.model_names[0], | |
| system_message="你是一个聪明的助手,请根据用户的提示来完成任务", | |
| messages=[], | |
| roles=["user", "assistant"], | |
| sep="\n### ", | |
| stop_str="###", | |
| ) | |
| if __name__ == "__main__": | |
| import uvicorn | |
| from server.utils import MakeFastAPIOffline | |
| from fastchat.serve.model_worker import app | |
| worker = QianFanWorker( | |
| controller_addr="http://127.0.0.1:20001", | |
| worker_addr="http://127.0.0.1:21004" | |
| ) | |
| sys.modules["fastchat.serve.model_worker"].worker = worker | |
| MakeFastAPIOffline(app) | |
| uvicorn.run(app, port=21004) | |