Spaces:
Running
Running
| from __future__ import annotations | |
| from langchain.agents import Tool, AgentOutputParser | |
| from langchain.prompts import StringPromptTemplate | |
| from typing import List | |
| from langchain.schema import AgentAction, AgentFinish | |
| from configs import SUPPORT_AGENT_MODEL | |
| from server.agent import model_container | |
| class CustomPromptTemplate(StringPromptTemplate): | |
| template: str | |
| tools: List[Tool] | |
| def format(self, **kwargs) -> str: | |
| intermediate_steps = kwargs.pop("intermediate_steps") | |
| thoughts = "" | |
| for action, observation in intermediate_steps: | |
| thoughts += action.log | |
| thoughts += f"\nObservation: {observation}\nThought: " | |
| kwargs["agent_scratchpad"] = thoughts | |
| kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools]) | |
| kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools]) | |
| return self.template.format(**kwargs) | |
| class CustomOutputParser(AgentOutputParser): | |
| begin: bool = False | |
| def __init__(self): | |
| super().__init__() | |
| self.begin = True | |
| def parse(self, llm_output: str) -> AgentFinish | tuple[dict[str, str], str] | AgentAction: | |
| if not any(agent in model_container.MODEL for agent in SUPPORT_AGENT_MODEL) and self.begin: | |
| self.begin = False | |
| stop_words = ["Observation:"] | |
| min_index = len(llm_output) | |
| for stop_word in stop_words: | |
| index = llm_output.find(stop_word) | |
| if index != -1 and index < min_index: | |
| min_index = index | |
| llm_output = llm_output[:min_index] | |
| if "Final Answer:" in llm_output: | |
| self.begin = True | |
| return AgentFinish( | |
| return_values={"output": llm_output.split("Final Answer:", 1)[-1].strip()}, | |
| log=llm_output, | |
| ) | |
| parts = llm_output.split("Action:") | |
| if len(parts) < 2: | |
| return AgentFinish( | |
| return_values={"output": f"调用agent工具失败,该回答为大模型自身能力的回答:\n\n `{llm_output}`"}, | |
| log=llm_output, | |
| ) | |
| action = parts[1].split("Action Input:")[0].strip() | |
| action_input = parts[1].split("Action Input:")[1].strip() | |
| try: | |
| ans = AgentAction( | |
| tool=action, | |
| tool_input=action_input.strip(" ").strip('"'), | |
| log=llm_output | |
| ) | |
| return ans | |
| except: | |
| return AgentFinish( | |
| return_values={"output": f"调用agent失败: `{llm_output}`"}, | |
| log=llm_output, | |
| ) | |