Spaces:
Sleeping
Sleeping
| import json | |
| import sys | |
| from fastchat.conversation import Conversation | |
| from configs import TEMPERATURE | |
| from http import HTTPStatus | |
| from typing import List, Literal, Dict | |
| from fastchat import conversation as conv | |
| from server.model_workers.base import * | |
| from server.model_workers.base import ApiEmbeddingsParams | |
| from configs import logger, log_verbose | |
| class QwenWorker(ApiModelWorker): | |
| DEFAULT_EMBED_MODEL = "text-embedding-v1" | |
| def __init__( | |
| self, | |
| *, | |
| version: Literal["qwen-turbo", "qwen-plus"] = "qwen-turbo", | |
| model_names: List[str] = ["qwen-api"], | |
| controller_addr: str = None, | |
| worker_addr: str = None, | |
| **kwargs, | |
| ): | |
| kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr) | |
| kwargs.setdefault("context_len", 16384) | |
| super().__init__(**kwargs) | |
| self.version = version | |
| def do_chat(self, params: ApiChatParams) -> Dict: | |
| import dashscope | |
| params.load_config(self.model_names[0]) | |
| if log_verbose: | |
| logger.info(f'{self.__class__.__name__}:params: {params}') | |
| gen = dashscope.Generation() | |
| responses = gen.call( | |
| model=params.version, | |
| temperature=params.temperature, | |
| api_key=params.api_key, | |
| messages=params.messages, | |
| result_format='message', # set the result is message format. | |
| stream=True, | |
| ) | |
| for resp in responses: | |
| if resp["status_code"] == 200: | |
| if choices := resp["output"]["choices"]: | |
| yield { | |
| "error_code": 0, | |
| "text": choices[0]["message"]["content"], | |
| } | |
| else: | |
| data = { | |
| "error_code": resp["status_code"], | |
| "text": resp["message"], | |
| "error": { | |
| "message": resp["message"], | |
| "type": "invalid_request_error", | |
| "param": None, | |
| "code": None, | |
| } | |
| } | |
| self.logger.error(f"请求千问 API 时发生错误:{data}") | |
| yield data | |
| def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict: | |
| import dashscope | |
| params.load_config(self.model_names[0]) | |
| if log_verbose: | |
| logger.info(f'{self.__class__.__name__}:params: {params}') | |
| result = [] | |
| i = 0 | |
| while i < len(params.texts): | |
| texts = params.texts[i:i+25] | |
| resp = dashscope.TextEmbedding.call( | |
| model=params.embed_model or self.DEFAULT_EMBED_MODEL, | |
| input=texts, # 最大25行 | |
| api_key=params.api_key, | |
| ) | |
| if resp["status_code"] != 200: | |
| data = { | |
| "code": resp["status_code"], | |
| "msg": resp.message, | |
| "error": { | |
| "message": resp["message"], | |
| "type": "invalid_request_error", | |
| "param": None, | |
| "code": None, | |
| } | |
| } | |
| self.logger.error(f"请求千问 API 时发生错误:{data}") | |
| return data | |
| else: | |
| embeddings = [x["embedding"] for x in resp["output"]["embeddings"]] | |
| result += embeddings | |
| i += 25 | |
| return {"code": 200, "data": result} | |
| def get_embeddings(self, params): | |
| print("embedding") | |
| print(params) | |
| def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation: | |
| return conv.Conversation( | |
| name=self.model_names[0], | |
| system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。", | |
| messages=[], | |
| roles=["user", "assistant", "system"], | |
| sep="\n### ", | |
| stop_str="###", | |
| ) | |
| if __name__ == "__main__": | |
| import uvicorn | |
| from server.utils import MakeFastAPIOffline | |
| from fastchat.serve.model_worker import app | |
| worker = QwenWorker( | |
| controller_addr="http://127.0.0.1:20001", | |
| worker_addr="http://127.0.0.1:20007", | |
| ) | |
| sys.modules["fastchat.serve.model_worker"].worker = worker | |
| MakeFastAPIOffline(app) | |
| uvicorn.run(app, port=20007) | |