Spaces:
Sleeping
Sleeping
| import os | |
| # 默认使用的知识库 | |
| DEFAULT_KNOWLEDGE_BASE = "samples" | |
| # 默认向量库/全文检索引擎类型。可选:faiss, milvus(离线) & zilliz(在线), pgvector,全文检索引擎es | |
| DEFAULT_VS_TYPE = "faiss" | |
| # 缓存向量库数量(针对FAISS) | |
| CACHED_VS_NUM = 1 | |
| # 缓存临时向量库数量(针对FAISS),用于文件对话 | |
| CACHED_MEMO_VS_NUM = 10 | |
| # 知识库中单段文本长度(不适用MarkdownHeaderTextSplitter) | |
| CHUNK_SIZE = 250 | |
| # 知识库中相邻文本重合长度(不适用MarkdownHeaderTextSplitter) | |
| OVERLAP_SIZE = 50 | |
| # 知识库匹配向量数量 | |
| VECTOR_SEARCH_TOP_K = 3 | |
| # 知识库匹配的距离阈值,一般取值范围在0-1之间,SCORE越小,距离越小从而相关度越高。 | |
| # 但有用户报告遇到过匹配分值超过1的情况,为了兼容性默认设为1,在WEBUI中调整范围为0-2 | |
| SCORE_THRESHOLD = 1.0 | |
| # 默认搜索引擎。可选:bing, duckduckgo, metaphor | |
| DEFAULT_SEARCH_ENGINE = "duckduckgo" | |
| # 搜索引擎匹配结题数量 | |
| SEARCH_ENGINE_TOP_K = 3 | |
| # Bing 搜索必备变量 | |
| # 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search | |
| # 具体申请方式请见 | |
| # https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource | |
| # 使用python创建bing api 搜索实例详见: | |
| # https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python | |
| BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search" | |
| # 注意不是bing Webmaster Tools的api key, | |
| # 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out | |
| # 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG | |
| BING_SUBSCRIPTION_KEY = "" | |
| # metaphor搜索需要KEY | |
| METAPHOR_API_KEY = "" | |
| # 心知天气 API KEY,用于天气Agent。申请:https://www.seniverse.com/ | |
| SENIVERSE_API_KEY = "" | |
| # 是否开启中文标题加强,以及标题增强的相关配置 | |
| # 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记; | |
| # 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。 | |
| ZH_TITLE_ENHANCE = False | |
| # PDF OCR 控制:只对宽高超过页面一定比例(图片宽/页面宽,图片高/页面高)的图片进行 OCR。 | |
| # 这样可以避免 PDF 中一些小图片的干扰,提高非扫描版 PDF 处理速度 | |
| PDF_OCR_THRESHOLD = (0.6, 0.6) | |
| # 每个知识库的初始化介绍,用于在初始化知识库时显示和Agent调用,没写则没有介绍,不会被Agent调用。 | |
| KB_INFO = { | |
| "知识库名称": "知识库介绍", | |
| "samples": "关于本项目issue的解答", | |
| } | |
| # 通常情况下不需要更改以下内容 | |
| # 知识库默认存储路径 | |
| KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base") | |
| if not os.path.exists(KB_ROOT_PATH): | |
| os.mkdir(KB_ROOT_PATH) | |
| # 数据库默认存储路径。 | |
| # 如果使用sqlite,可以直接修改DB_ROOT_PATH;如果使用其它数据库,请直接修改SQLALCHEMY_DATABASE_URI。 | |
| DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db") | |
| SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}" | |
| # 可选向量库类型及对应配置 | |
| kbs_config = { | |
| "faiss": { | |
| }, | |
| "milvus": { | |
| "host": "127.0.0.1", | |
| "port": "19530", | |
| "user": "", | |
| "password": "", | |
| "secure": False, | |
| }, | |
| "zilliz": { | |
| "host": "in01-a7ce524e41e3935.ali-cn-hangzhou.vectordb.zilliz.com.cn", | |
| "port": "19530", | |
| "user": "", | |
| "password": "", | |
| "secure": True, | |
| }, | |
| "pg": { | |
| "connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatchat", | |
| }, | |
| "es": { | |
| "host": "127.0.0.1", | |
| "port": "9200", | |
| "index_name": "test_index", | |
| "user": "", | |
| "password": "" | |
| }, | |
| "milvus_kwargs":{ | |
| "search_params":{"metric_type": "L2"}, #在此处增加search_params | |
| "index_params":{"metric_type": "L2","index_type": "HNSW"} # 在此处增加index_params | |
| } | |
| } | |
| # TextSplitter配置项,如果你不明白其中的含义,就不要修改。 | |
| text_splitter_dict = { | |
| "ChineseRecursiveTextSplitter": { | |
| "source": "huggingface", # 选择tiktoken则使用openai的方法 | |
| "tokenizer_name_or_path": "", | |
| }, | |
| "SpacyTextSplitter": { | |
| "source": "huggingface", | |
| "tokenizer_name_or_path": "gpt2", | |
| }, | |
| "RecursiveCharacterTextSplitter": { | |
| "source": "tiktoken", | |
| "tokenizer_name_or_path": "cl100k_base", | |
| }, | |
| "MarkdownHeaderTextSplitter": { | |
| "headers_to_split_on": | |
| [ | |
| ("#", "head1"), | |
| ("##", "head2"), | |
| ("###", "head3"), | |
| ("####", "head4"), | |
| ] | |
| }, | |
| } | |
| # TEXT_SPLITTER 名称 | |
| TEXT_SPLITTER_NAME = "ChineseRecursiveTextSplitter" | |
| # Embedding模型定制词语的词表文件 | |
| EMBEDDING_KEYWORD_FILE = "embedding_keywords.txt" | |