Clean up
Browse files
app.py
CHANGED
|
@@ -1,170 +1,6 @@
|
|
| 1 |
from nmtscore import NMTScorer
|
| 2 |
import gradio as gr
|
| 3 |
-
|
| 4 |
-
from dataclasses import dataclass
|
| 5 |
-
from typing import List, Union, Optional
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
-
from scipy.special import softmax
|
| 9 |
-
from scipy.stats import permutation_test
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
@dataclass
|
| 13 |
-
class TranslationDirectionResult:
|
| 14 |
-
sentence1: Union[str, List[str]]
|
| 15 |
-
sentence2: Union[str, List[str]]
|
| 16 |
-
lang1: str
|
| 17 |
-
lang2: str
|
| 18 |
-
raw_prob_1_to_2: float
|
| 19 |
-
raw_prob_2_to_1: float
|
| 20 |
-
pvalue: Optional[float] = None
|
| 21 |
-
|
| 22 |
-
@property
|
| 23 |
-
def num_sentences(self):
|
| 24 |
-
return len(self.sentence1) if isinstance(self.sentence1, list) else 1
|
| 25 |
-
|
| 26 |
-
@property
|
| 27 |
-
def prob_1_to_2(self):
|
| 28 |
-
return softmax([self.raw_prob_1_to_2, self.raw_prob_2_to_1])[0]
|
| 29 |
-
|
| 30 |
-
@property
|
| 31 |
-
def prob_2_to_1(self):
|
| 32 |
-
return softmax([self.raw_prob_1_to_2, self.raw_prob_2_to_1])[1]
|
| 33 |
-
|
| 34 |
-
@property
|
| 35 |
-
def predicted_direction(self) -> str:
|
| 36 |
-
if self.raw_prob_1_to_2 >= self.raw_prob_2_to_1:
|
| 37 |
-
return self.lang1 + '→' + self.lang2
|
| 38 |
-
else:
|
| 39 |
-
return self.lang2 + '→' + self.lang1
|
| 40 |
-
|
| 41 |
-
def __str__(self):
|
| 42 |
-
s = f"""\
|
| 43 |
-
Predicted direction: {self.predicted_direction}
|
| 44 |
-
{self.num_sentences} sentence pair{"s" if self.num_sentences > 1 else ""}
|
| 45 |
-
{self.lang1}→{self.lang2}: {self.prob_1_to_2:.3f}
|
| 46 |
-
{self.lang2}→{self.lang1}: {self.prob_2_to_1:.3f}"""
|
| 47 |
-
if self.pvalue is not None:
|
| 48 |
-
s += f"\np-value: {self.pvalue}\n"
|
| 49 |
-
return s
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class TranslationDirectionDetector:
|
| 53 |
-
|
| 54 |
-
def __init__(self, scorer: NMTScorer = None, use_normalization: bool = False):
|
| 55 |
-
self.scorer = scorer or NMTScorer()
|
| 56 |
-
self.use_normalization = use_normalization
|
| 57 |
-
|
| 58 |
-
def detect(self,
|
| 59 |
-
sentence1: Union[str, List[str]],
|
| 60 |
-
sentence2: Union[str, List[str]],
|
| 61 |
-
lang1: str,
|
| 62 |
-
lang2: str,
|
| 63 |
-
return_pvalue: bool = False,
|
| 64 |
-
pvalue_n_resamples: int = 9999,
|
| 65 |
-
score_kwargs: dict = None
|
| 66 |
-
) -> TranslationDirectionResult:
|
| 67 |
-
if isinstance(sentence1, list) and isinstance(sentence2, list):
|
| 68 |
-
if len(sentence1) != len(sentence2):
|
| 69 |
-
raise ValueError("Lists sentence1 and sentence2 must have same length")
|
| 70 |
-
if len(sentence1) == 0:
|
| 71 |
-
raise ValueError("Lists sentence1 and sentence2 must not be empty")
|
| 72 |
-
if len(sentence1) == 1 and return_pvalue:
|
| 73 |
-
raise ValueError("return_pvalue=True requires the documents to have multiple sentences")
|
| 74 |
-
if lang1 == lang2:
|
| 75 |
-
raise ValueError("lang1 and lang2 must be different")
|
| 76 |
-
|
| 77 |
-
prob_1_to_2 = self.scorer.score_direct(
|
| 78 |
-
sentence2, sentence1,
|
| 79 |
-
lang2, lang1,
|
| 80 |
-
normalize=self.use_normalization,
|
| 81 |
-
both_directions=False,
|
| 82 |
-
score_kwargs=score_kwargs
|
| 83 |
-
)
|
| 84 |
-
prob_2_to_1 = self.scorer.score_direct(
|
| 85 |
-
sentence1, sentence2,
|
| 86 |
-
lang1, lang2,
|
| 87 |
-
normalize=self.use_normalization,
|
| 88 |
-
both_directions=False,
|
| 89 |
-
score_kwargs=score_kwargs
|
| 90 |
-
)
|
| 91 |
-
pvalue = None
|
| 92 |
-
|
| 93 |
-
if isinstance(sentence1, list): # document-level
|
| 94 |
-
# Compute the average probability per target token, across the complete document
|
| 95 |
-
# 1. Convert probabilities back to log probabilities
|
| 96 |
-
log_prob_1_to_2 = np.log2(np.array(prob_1_to_2))
|
| 97 |
-
log_prob_2_to_1 = np.log2(np.array(prob_2_to_1))
|
| 98 |
-
# 2. Reverse the sentence-level length normalization
|
| 99 |
-
sentence1_lengths = np.array([self._get_sentence_length(s) for s in sentence1])
|
| 100 |
-
sentence2_lengths = np.array([self._get_sentence_length(s) for s in sentence2])
|
| 101 |
-
log_prob_1_to_2 = sentence2_lengths * log_prob_1_to_2
|
| 102 |
-
log_prob_2_to_1 = sentence1_lengths * log_prob_2_to_1
|
| 103 |
-
# 4. Sum up the log probabilities across the document
|
| 104 |
-
total_log_prob_1_to_2 = log_prob_1_to_2.sum()
|
| 105 |
-
total_log_prob_2_to_1 = log_prob_2_to_1.sum()
|
| 106 |
-
# 3. Document-level length normalization
|
| 107 |
-
avg_log_prob_1_to_2 = total_log_prob_1_to_2 / sum(sentence2_lengths)
|
| 108 |
-
avg_log_prob_2_to_1 = total_log_prob_2_to_1 / sum(sentence1_lengths)
|
| 109 |
-
# 4. Convert back to probabilities
|
| 110 |
-
prob_1_to_2 = 2 ** avg_log_prob_1_to_2
|
| 111 |
-
prob_2_to_1 = 2 ** avg_log_prob_2_to_1
|
| 112 |
-
|
| 113 |
-
if return_pvalue:
|
| 114 |
-
x = np.vstack([log_prob_1_to_2, sentence2_lengths]).T
|
| 115 |
-
y = np.vstack([log_prob_2_to_1, sentence1_lengths]).T
|
| 116 |
-
result = permutation_test(
|
| 117 |
-
data=(x, y),
|
| 118 |
-
statistic=self._statistic_token_mean,
|
| 119 |
-
permutation_type="samples",
|
| 120 |
-
n_resamples=pvalue_n_resamples,
|
| 121 |
-
)
|
| 122 |
-
pvalue = result.pvalue
|
| 123 |
-
else:
|
| 124 |
-
if return_pvalue:
|
| 125 |
-
raise ValueError("return_pvalue=True requires sentence1 and sentence2 to be lists of sentences")
|
| 126 |
-
|
| 127 |
-
return TranslationDirectionResult(
|
| 128 |
-
sentence1=sentence1,
|
| 129 |
-
sentence2=sentence2,
|
| 130 |
-
lang1=lang1,
|
| 131 |
-
lang2=lang2,
|
| 132 |
-
raw_prob_1_to_2=prob_1_to_2,
|
| 133 |
-
raw_prob_2_to_1=prob_2_to_1,
|
| 134 |
-
pvalue=pvalue,
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
def _get_sentence_length(self, sentence: str) -> int:
|
| 138 |
-
tokens = self.scorer.model.tokenizer.tokenize(sentence)
|
| 139 |
-
return len(tokens)
|
| 140 |
-
|
| 141 |
-
@staticmethod
|
| 142 |
-
def _statistic_token_mean(x: np.ndarray, y: np.ndarray, axis: int = -1) -> float:
|
| 143 |
-
"""
|
| 144 |
-
Statistic for scipy.stats.permutation_test
|
| 145 |
-
|
| 146 |
-
:param x: Matrix of shape (2 x num_sentences). The first row contains the unnormalized log probability
|
| 147 |
-
for lang1→lang2, the second row contains the sentence lengths in lang2.
|
| 148 |
-
:param y: Same as x, but for lang2→lang1
|
| 149 |
-
:return: Difference between lang1→lang2 and lang2→lang1
|
| 150 |
-
"""
|
| 151 |
-
if axis != -1:
|
| 152 |
-
raise NotImplementedError("Only axis=-1 is supported")
|
| 153 |
-
# Add batch dim
|
| 154 |
-
if x.ndim == 2:
|
| 155 |
-
x = x[np.newaxis, ...]
|
| 156 |
-
y = y[np.newaxis, ...]
|
| 157 |
-
# Sum up the log probabilities across the document
|
| 158 |
-
total_log_prob_1_to_2 = x[:, 0].sum(axis=axis)
|
| 159 |
-
total_log_prob_2_to_1 = y[:, 0].sum(axis=axis)
|
| 160 |
-
# Document-level length normalization
|
| 161 |
-
avg_log_prob_1_to_2 = total_log_prob_1_to_2 / x[:, 1].sum(axis=axis)
|
| 162 |
-
avg_log_prob_2_to_1 = total_log_prob_2_to_1 / y[:, 1].sum(axis=axis)
|
| 163 |
-
# Convert to probabilities
|
| 164 |
-
prob_1_to_2 = 2 ** avg_log_prob_1_to_2
|
| 165 |
-
prob_2_to_1 = 2 ** avg_log_prob_2_to_1
|
| 166 |
-
# Compute difference
|
| 167 |
-
return prob_1_to_2 - prob_2_to_1
|
| 168 |
|
| 169 |
|
| 170 |
detector = TranslationDirectionDetector(NMTScorer("m2m100_418M"))
|
|
|
|
| 1 |
from nmtscore import NMTScorer
|
| 2 |
import gradio as gr
|
| 3 |
+
from translation_direction_detection import TranslationDirectionDetector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
detector = TranslationDirectionDetector(NMTScorer("m2m100_418M"))
|