Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from diffusers import I2VGenXLPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from moviepy.editor import ImageSequenceClip
|
| 7 |
+
import io
|
| 8 |
+
|
| 9 |
+
def generate_video(image, prompt, negative_prompt, video_length):
|
| 10 |
+
generator = torch.manual_seed(8888)
|
| 11 |
+
|
| 12 |
+
# Set the device to CPU or a non-NVIDIA GPU
|
| 13 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
| 14 |
+
print(f"Using device: {device}")
|
| 15 |
+
|
| 16 |
+
# Load the pipeline
|
| 17 |
+
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float32)
|
| 18 |
+
pipeline.to(device) # Move the model to the selected device
|
| 19 |
+
|
| 20 |
+
# Generate frames with progress tracking
|
| 21 |
+
frames = []
|
| 22 |
+
total_frames = video_length * 30 # Assuming 30 frames per second
|
| 23 |
+
|
| 24 |
+
for i in range(total_frames):
|
| 25 |
+
frame = pipeline(
|
| 26 |
+
prompt=prompt,
|
| 27 |
+
image=image,
|
| 28 |
+
num_inference_steps=5,
|
| 29 |
+
negative_prompt=negative_prompt,
|
| 30 |
+
guidance_scale=9.0,
|
| 31 |
+
generator=generator,
|
| 32 |
+
num_frames=1
|
| 33 |
+
).frames[0]
|
| 34 |
+
frames.append(np.array(frame))
|
| 35 |
+
|
| 36 |
+
# Update progress
|
| 37 |
+
yield (i + 1) / total_frames # Yield progress
|
| 38 |
+
|
| 39 |
+
# Create a video clip from the frames
|
| 40 |
+
output_file = "output_video.mp4"
|
| 41 |
+
clip = ImageSequenceClip(frames, fps=30) # Set the frames per second
|
| 42 |
+
clip.write_videofile(output_file, codec='libx264', audio=False)
|
| 43 |
+
|
| 44 |
+
return output_file
|
| 45 |
+
|
| 46 |
+
# Gradio interface
|
| 47 |
+
def interface(image, prompt, negative_prompt, video_length):
|
| 48 |
+
# Convert the uploaded image to a PIL Image
|
| 49 |
+
image = Image.open(io.BytesIO(image.read()))
|
| 50 |
+
|
| 51 |
+
# Generate video and track progress
|
| 52 |
+
return generate_video(image, prompt, negative_prompt, video_length)
|
| 53 |
+
|
| 54 |
+
# Create Gradio Blocks
|
| 55 |
+
with gr.Blocks() as demo:
|
| 56 |
+
gr.Markdown("# AI-Powered Video Generation")
|
| 57 |
+
|
| 58 |
+
with gr.Row():
|
| 59 |
+
image_input = gr.Image(type="file", label="Upload Image")
|
| 60 |
+
prompt_input = gr.Textbox(label="Enter the Prompt")
|
| 61 |
+
negative_prompt_input = gr.Textbox(label="Enter the Negative Prompt")
|
| 62 |
+
video_length_input = gr.Number(label="Video Length (seconds)", value=10, precision=0)
|
| 63 |
+
|
| 64 |
+
generate_button = gr.Button("Generate Video")
|
| 65 |
+
output_video = gr.Video(label="Output Video")
|
| 66 |
+
|
| 67 |
+
# Define the button action
|
| 68 |
+
generate_button.click(
|
| 69 |
+
interface,
|
| 70 |
+
inputs=[image_input, prompt_input, negative_prompt_input, video_length_input],
|
| 71 |
+
outputs=output_video,
|
| 72 |
+
show_progress=True # Show progress bar
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Launch the Gradio app
|
| 76 |
+
demo.launch()
|