Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,26 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from diffusers import I2VGenXLPipeline
|
| 4 |
from transformers import MusicgenForConditionalGeneration, AutoProcessor
|
| 5 |
from PIL import Image
|
| 6 |
from moviepy.editor import ImageSequenceClip
|
| 7 |
-
import numpy as np
|
| 8 |
import io
|
| 9 |
import scipy.io.wavfile
|
| 10 |
import ffmpeg
|
| 11 |
|
| 12 |
def generate_video(image, prompt, negative_prompt, video_length):
|
| 13 |
generator = torch.manual_seed(8888)
|
|
|
|
|
|
|
| 14 |
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
| 15 |
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float32)
|
| 16 |
-
pipeline.to(device)
|
| 17 |
|
|
|
|
| 18 |
frames = []
|
| 19 |
total_frames = video_length * 30 # Assuming 30 frames per second
|
| 20 |
|
|
@@ -29,11 +35,15 @@ def generate_video(image, prompt, negative_prompt, video_length):
|
|
| 29 |
num_frames=1
|
| 30 |
).frames[0]
|
| 31 |
frames.append(np.array(frame))
|
| 32 |
-
yield (i + 1) / total_frames # Update progress
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
output_file = "output_video.mp4"
|
| 35 |
-
clip = ImageSequenceClip(frames, fps=30)
|
| 36 |
clip.write_videofile(output_file, codec='libx264', audio=False)
|
|
|
|
| 37 |
return output_file
|
| 38 |
|
| 39 |
def generate_music(prompt, unconditional=False):
|
|
@@ -41,6 +51,7 @@ def generate_music(prompt, unconditional=False):
|
|
| 41 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 42 |
model.to(device)
|
| 43 |
|
|
|
|
| 44 |
if unconditional:
|
| 45 |
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
|
| 46 |
audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
|
|
@@ -55,10 +66,21 @@ def generate_music(prompt, unconditional=False):
|
|
| 55 |
|
| 56 |
sampling_rate = model.config.audio_encoder.sampling_rate
|
| 57 |
audio_file = "musicgen_out.wav"
|
|
|
|
|
|
|
| 58 |
audio_data = audio_values[0].cpu().numpy()
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
scipy.io.wavfile.write(audio_file, sampling_rate, audio_data)
|
|
|
|
| 62 |
return audio_file
|
| 63 |
|
| 64 |
def combine_audio_video(audio_file, video_file):
|
|
@@ -78,7 +100,7 @@ def interface(image_path, prompt, negative_prompt, video_length, music_prompt, u
|
|
| 78 |
|
| 79 |
with gr.Blocks() as demo:
|
| 80 |
gr.Markdown("# AI-Powered Video and Music Generation")
|
| 81 |
-
|
| 82 |
with gr.Row():
|
| 83 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 84 |
prompt_input = gr.Textbox(label="Enter the Video Prompt")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
from diffusers import I2VGenXLPipeline
|
| 5 |
from transformers import MusicgenForConditionalGeneration, AutoProcessor
|
| 6 |
from PIL import Image
|
| 7 |
from moviepy.editor import ImageSequenceClip
|
|
|
|
| 8 |
import io
|
| 9 |
import scipy.io.wavfile
|
| 10 |
import ffmpeg
|
| 11 |
|
| 12 |
def generate_video(image, prompt, negative_prompt, video_length):
|
| 13 |
generator = torch.manual_seed(8888)
|
| 14 |
+
|
| 15 |
+
# Set the device to CPU or a non-NVIDIA GPU
|
| 16 |
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
| 17 |
+
print(f"Using device: {device}")
|
| 18 |
+
|
| 19 |
+
# Load the pipeline
|
| 20 |
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float32)
|
| 21 |
+
pipeline.to(device) # Move the model to the selected device
|
| 22 |
|
| 23 |
+
# Generate frames with progress tracking
|
| 24 |
frames = []
|
| 25 |
total_frames = video_length * 30 # Assuming 30 frames per second
|
| 26 |
|
|
|
|
| 35 |
num_frames=1
|
| 36 |
).frames[0]
|
| 37 |
frames.append(np.array(frame))
|
|
|
|
| 38 |
|
| 39 |
+
# Update progress
|
| 40 |
+
yield (i + 1) / total_frames # Yield progress
|
| 41 |
+
|
| 42 |
+
# Create a video clip from the frames
|
| 43 |
output_file = "output_video.mp4"
|
| 44 |
+
clip = ImageSequenceClip(frames, fps=30) # Set the frames per second
|
| 45 |
clip.write_videofile(output_file, codec='libx264', audio=False)
|
| 46 |
+
|
| 47 |
return output_file
|
| 48 |
|
| 49 |
def generate_music(prompt, unconditional=False):
|
|
|
|
| 51 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 52 |
model.to(device)
|
| 53 |
|
| 54 |
+
# Generate music
|
| 55 |
if unconditional:
|
| 56 |
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
|
| 57 |
audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
|
|
|
|
| 66 |
|
| 67 |
sampling_rate = model.config.audio_encoder.sampling_rate
|
| 68 |
audio_file = "musicgen_out.wav"
|
| 69 |
+
|
| 70 |
+
# Ensure audio_values is 1D and scale if necessary
|
| 71 |
audio_data = audio_values[0].cpu().numpy()
|
| 72 |
+
|
| 73 |
+
# Check if audio_data is in the correct format
|
| 74 |
+
if audio_data.ndim > 1:
|
| 75 |
+
audio_data = audio_data[0] # Take the first channel if stereo
|
| 76 |
+
|
| 77 |
+
# Scale audio data to 16-bit PCM format
|
| 78 |
+
audio_data = np.clip(audio_data, -1.0, 1.0) # Ensure values are in the range [-1, 1]
|
| 79 |
+
audio_data = (audio_data * 32767).astype(np.int16) # Scale to int16
|
| 80 |
+
|
| 81 |
+
# Save the generated audio
|
| 82 |
scipy.io.wavfile.write(audio_file, sampling_rate, audio_data)
|
| 83 |
+
|
| 84 |
return audio_file
|
| 85 |
|
| 86 |
def combine_audio_video(audio_file, video_file):
|
|
|
|
| 100 |
|
| 101 |
with gr.Blocks() as demo:
|
| 102 |
gr.Markdown("# AI-Powered Video and Music Generation")
|
| 103 |
+
|
| 104 |
with gr.Row():
|
| 105 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 106 |
prompt_input = gr.Textbox(label="Enter the Video Prompt")
|