Spaces:
Sleeping
Sleeping
Abaryan
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("rgb2gbr/GRPO_BioMedmcqa_Qwen2.5-0.5B")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoModelForMultipleChoice, AutoTokenizer
|
| 6 |
+
import os
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import random
|
| 9 |
+
from typing import Optional, List
|
| 10 |
import gradio as gr
|
|
|
|
| 11 |
|
| 12 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# Add CORS middleware for Gradio
|
| 15 |
+
app.add_middleware(
|
| 16 |
+
CORSMiddleware,
|
| 17 |
+
allow_origins=["*"],
|
| 18 |
+
allow_credentials=True,
|
| 19 |
+
allow_methods=["*"],
|
| 20 |
+
allow_headers=["*"],
|
| 21 |
+
)
|
| 22 |
|
| 23 |
+
# Define input models
|
| 24 |
+
class QuestionRequest(BaseModel):
|
| 25 |
+
question: str
|
| 26 |
+
options: list[str] # List of 4 options
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
class DatasetQuestion(BaseModel):
|
| 29 |
+
question: str
|
| 30 |
+
opa: str
|
| 31 |
+
opb: str
|
| 32 |
+
opc: str
|
| 33 |
+
opd: str
|
| 34 |
+
cop: Optional[int] = None # Correct option (0-3)
|
| 35 |
+
exp: Optional[str] = None # Explanation if available
|
| 36 |
|
| 37 |
+
# Global variables
|
| 38 |
+
model = None
|
| 39 |
+
tokenizer = None
|
| 40 |
+
dataset = None
|
| 41 |
|
| 42 |
+
def load_model():
|
| 43 |
+
global model, tokenizer, dataset
|
| 44 |
+
try:
|
| 45 |
+
# Load your fine-tuned model and tokenizer
|
| 46 |
+
model_name = os.getenv("BioXP-0.5b", "rgb2gbr/GRPO_BioMedmcqa_Qwen2.5-0.5B")
|
| 47 |
+
model = AutoModelForMultipleChoice.from_pretrained(model_name)
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 49 |
+
|
| 50 |
+
# Load MedMCQA dataset
|
| 51 |
+
dataset = load_dataset("openlifescienceai/medmcqa")
|
| 52 |
+
|
| 53 |
+
# Move model to GPU if available
|
| 54 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
+
model = model.to(device)
|
| 56 |
+
model.eval()
|
| 57 |
+
except Exception as e:
|
| 58 |
+
raise Exception(f"Error loading model: {str(e)}")
|
| 59 |
|
| 60 |
+
def predict_gradio(question: str, option_a: str, option_b: str, option_c: str, option_d: str):
|
| 61 |
+
"""Gradio interface prediction function"""
|
| 62 |
+
try:
|
| 63 |
+
options = [option_a, option_b, option_c, option_d]
|
| 64 |
+
inputs = []
|
| 65 |
+
for option in options:
|
| 66 |
+
text = f"{question} {option}"
|
| 67 |
+
inputs.append(text)
|
| 68 |
+
|
| 69 |
+
encodings = tokenizer(
|
| 70 |
+
inputs,
|
| 71 |
+
padding=True,
|
| 72 |
+
truncation=True,
|
| 73 |
+
max_length=512,
|
| 74 |
+
return_tensors="pt"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
device = next(model.parameters()).device
|
| 78 |
+
encodings = {k: v.to(device) for k, v in encodings.items()}
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
outputs = model(**encodings)
|
| 82 |
+
logits = outputs.logits
|
| 83 |
+
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
| 84 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 85 |
+
|
| 86 |
+
# Format the output for Gradio
|
| 87 |
+
result = f"Predicted Answer: {options[predicted_class]}\n\n"
|
| 88 |
+
result += "Confidence Scores:\n"
|
| 89 |
+
for i, (opt, prob) in enumerate(zip(options, probabilities)):
|
| 90 |
+
result += f"{opt}: {prob:.2%}\n"
|
| 91 |
+
|
| 92 |
+
return result
|
| 93 |
+
|
| 94 |
+
except Exception as e:
|
| 95 |
+
return f"Error: {str(e)}"
|
| 96 |
|
| 97 |
+
def get_random_question():
|
| 98 |
+
"""Get a random question for Gradio interface"""
|
| 99 |
+
if dataset is None:
|
| 100 |
+
return "Error: Dataset not loaded", "", "", "", ""
|
| 101 |
+
|
| 102 |
+
index = random.randint(0, len(dataset['train']) - 1)
|
| 103 |
+
question_data = dataset['train'][index]
|
| 104 |
+
|
| 105 |
+
return (
|
| 106 |
+
question_data['question'],
|
| 107 |
+
question_data['opa'],
|
| 108 |
+
question_data['opb'],
|
| 109 |
+
question_data['opc'],
|
| 110 |
+
question_data['opd']
|
| 111 |
+
)
|
| 112 |
|
| 113 |
+
# Create Gradio interface
|
| 114 |
+
with gr.Blocks(title="Medical MCQ Predictor") as demo:
|
| 115 |
+
gr.Markdown("# Medical MCQ Predictor")
|
| 116 |
+
gr.Markdown("Enter a medical question and its options, or get a random question from MedMCQA dataset.")
|
| 117 |
+
|
| 118 |
+
with gr.Row():
|
| 119 |
+
with gr.Column():
|
| 120 |
+
question = gr.Textbox(label="Question", lines=3)
|
| 121 |
+
option_a = gr.Textbox(label="Option A")
|
| 122 |
+
option_b = gr.Textbox(label="Option B")
|
| 123 |
+
option_c = gr.Textbox(label="Option C")
|
| 124 |
+
option_d = gr.Textbox(label="Option D")
|
| 125 |
+
|
| 126 |
+
with gr.Row():
|
| 127 |
+
predict_btn = gr.Button("Predict")
|
| 128 |
+
random_btn = gr.Button("Get Random Question")
|
| 129 |
+
|
| 130 |
+
output = gr.Textbox(label="Prediction", lines=5)
|
| 131 |
+
|
| 132 |
+
predict_btn.click(
|
| 133 |
+
fn=predict_gradio,
|
| 134 |
+
inputs=[question, option_a, option_b, option_c, option_d],
|
| 135 |
+
outputs=output
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
random_btn.click(
|
| 139 |
+
fn=get_random_question,
|
| 140 |
+
inputs=[],
|
| 141 |
+
outputs=[question, option_a, option_b, option_c, option_d]
|
| 142 |
+
)
|
| 143 |
|
| 144 |
+
# Mount Gradio app to FastAPI
|
| 145 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 146 |
+
|
| 147 |
+
@app.on_event("startup")
|
| 148 |
+
async def startup_event():
|
| 149 |
+
load_model()
|
| 150 |
+
|
| 151 |
+
@app.get("/dataset/question")
|
| 152 |
+
async def get_dataset_question(index: Optional[int] = None, random_question: bool = False):
|
| 153 |
+
"""Get a question from the MedMCQA dataset"""
|
| 154 |
+
try:
|
| 155 |
+
if dataset is None:
|
| 156 |
+
raise HTTPException(status_code=500, detail="Dataset not loaded")
|
| 157 |
+
|
| 158 |
+
if random_question:
|
| 159 |
+
index = random.randint(0, len(dataset['train']) - 1)
|
| 160 |
+
elif index is None:
|
| 161 |
+
raise HTTPException(status_code=400, detail="Either index or random_question must be provided")
|
| 162 |
+
|
| 163 |
+
question_data = dataset['train'][index]
|
| 164 |
+
|
| 165 |
+
question = DatasetQuestion(
|
| 166 |
+
question=question_data['question'],
|
| 167 |
+
opa=question_data['opa'],
|
| 168 |
+
opb=question_data['opb'],
|
| 169 |
+
opc=question_data['opc'],
|
| 170 |
+
opd=question_data['opd'],
|
| 171 |
+
cop=question_data['cop'] if 'cop' in question_data else None,
|
| 172 |
+
exp=question_data['exp'] if 'exp' in question_data else None
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
return question
|
| 176 |
+
|
| 177 |
+
except Exception as e:
|
| 178 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 179 |
|
| 180 |
+
@app.post("/predict")
|
| 181 |
+
async def predict(request: QuestionRequest):
|
| 182 |
+
if len(request.options) != 4:
|
| 183 |
+
raise HTTPException(status_code=400, detail="Exactly 4 options are required")
|
| 184 |
+
|
| 185 |
+
try:
|
| 186 |
+
inputs = []
|
| 187 |
+
for option in request.options:
|
| 188 |
+
text = f"{request.question} {option}"
|
| 189 |
+
inputs.append(text)
|
| 190 |
+
|
| 191 |
+
encodings = tokenizer(
|
| 192 |
+
inputs,
|
| 193 |
+
padding=True,
|
| 194 |
+
truncation=True,
|
| 195 |
+
max_length=512,
|
| 196 |
+
return_tensors="pt"
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
device = next(model.parameters()).device
|
| 200 |
+
encodings = {k: v.to(device) for k, v in encodings.items()}
|
| 201 |
+
|
| 202 |
+
with torch.no_grad():
|
| 203 |
+
outputs = model(**encodings)
|
| 204 |
+
logits = outputs.logits
|
| 205 |
+
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
| 206 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 207 |
+
|
| 208 |
+
response = {
|
| 209 |
+
"predicted_option": request.options[predicted_class],
|
| 210 |
+
"option_index": predicted_class,
|
| 211 |
+
"confidence": probabilities[predicted_class],
|
| 212 |
+
"probabilities": {
|
| 213 |
+
f"option_{i}": prob for i, prob in enumerate(probabilities)
|
| 214 |
+
}
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
return response
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 221 |
|
| 222 |
+
@app.get("/health")
|
| 223 |
+
async def health_check():
|
| 224 |
+
return {
|
| 225 |
+
"status": "healthy",
|
| 226 |
+
"model_loaded": model is not None,
|
| 227 |
+
"dataset_loaded": dataset is not None
|
| 228 |
+
}
|