Spaces:
Sleeping
Sleeping
Abaryan
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,52 @@ from fastapi import FastAPI, HTTPException
|
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from pydantic import BaseModel
|
| 4 |
import torch
|
| 5 |
-
from transformers import
|
| 6 |
import os
|
| 7 |
from datasets import load_dataset
|
| 8 |
import random
|
| 9 |
-
from typing import Optional, List
|
| 10 |
import gradio as gr
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Add CORS middleware for Gradio
|
| 15 |
app.add_middleware(
|
|
@@ -34,82 +72,97 @@ class DatasetQuestion(BaseModel):
|
|
| 34 |
cop: Optional[int] = None # Correct option (0-3)
|
| 35 |
exp: Optional[str] = None # Explanation if available
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
def
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def predict_gradio(question: str, option_a: str, option_b: str, option_c: str, option_d: str):
|
| 61 |
"""Gradio interface prediction function"""
|
| 62 |
try:
|
| 63 |
options = [option_a, option_b, option_c, option_d]
|
| 64 |
-
inputs = []
|
| 65 |
-
for option in options:
|
| 66 |
-
text = f"{question} {option}"
|
| 67 |
-
inputs.append(text)
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
padding=True,
|
| 72 |
truncation=True,
|
| 73 |
-
max_length=512
|
| 74 |
-
return_tensors="pt"
|
| 75 |
)
|
| 76 |
|
| 77 |
device = next(model.parameters()).device
|
| 78 |
-
|
| 79 |
|
|
|
|
| 80 |
with torch.no_grad():
|
| 81 |
-
outputs = model(
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
# Format the output for Gradio
|
| 87 |
-
result = f"
|
| 88 |
-
result += "
|
| 89 |
-
for i, (opt, prob) in enumerate(zip(options, probabilities)):
|
| 90 |
-
result += f"{opt}: {prob:.2%}\n"
|
| 91 |
|
| 92 |
return result
|
| 93 |
|
| 94 |
except Exception as e:
|
| 95 |
return f"Error: {str(e)}"
|
| 96 |
|
| 97 |
-
def get_random_question():
|
| 98 |
-
"""Get a random question for Gradio interface"""
|
| 99 |
-
if dataset is None:
|
| 100 |
-
return "Error: Dataset not loaded", "", "", "", ""
|
| 101 |
-
|
| 102 |
-
index = random.randint(0, len(dataset['train']) - 1)
|
| 103 |
-
question_data = dataset['train'][index]
|
| 104 |
-
|
| 105 |
-
return (
|
| 106 |
-
question_data['question'],
|
| 107 |
-
question_data['opa'],
|
| 108 |
-
question_data['opb'],
|
| 109 |
-
question_data['opc'],
|
| 110 |
-
question_data['opd']
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
# Create Gradio interface
|
| 114 |
with gr.Blocks(title="Medical MCQ Predictor") as demo:
|
| 115 |
gr.Markdown("# Medical MCQ Predictor")
|
|
@@ -136,7 +189,7 @@ with gr.Blocks(title="Medical MCQ Predictor") as demo:
|
|
| 136 |
)
|
| 137 |
|
| 138 |
random_btn.click(
|
| 139 |
-
fn=
|
| 140 |
inputs=[],
|
| 141 |
outputs=[question, option_a, option_b, option_c, option_d]
|
| 142 |
)
|
|
@@ -144,36 +197,11 @@ with gr.Blocks(title="Medical MCQ Predictor") as demo:
|
|
| 144 |
# Mount Gradio app to FastAPI
|
| 145 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 146 |
|
| 147 |
-
@app.on_event("startup")
|
| 148 |
-
async def startup_event():
|
| 149 |
-
load_model()
|
| 150 |
-
|
| 151 |
@app.get("/dataset/question")
|
| 152 |
async def get_dataset_question(index: Optional[int] = None, random_question: bool = False):
|
| 153 |
"""Get a question from the MedMCQA dataset"""
|
| 154 |
try:
|
| 155 |
-
|
| 156 |
-
raise HTTPException(status_code=500, detail="Dataset not loaded")
|
| 157 |
-
|
| 158 |
-
if random_question:
|
| 159 |
-
index = random.randint(0, len(dataset['train']) - 1)
|
| 160 |
-
elif index is None:
|
| 161 |
-
raise HTTPException(status_code=400, detail="Either index or random_question must be provided")
|
| 162 |
-
|
| 163 |
-
question_data = dataset['train'][index]
|
| 164 |
-
|
| 165 |
-
question = DatasetQuestion(
|
| 166 |
-
question=question_data['question'],
|
| 167 |
-
opa=question_data['opa'],
|
| 168 |
-
opb=question_data['opb'],
|
| 169 |
-
opc=question_data['opc'],
|
| 170 |
-
opd=question_data['opd'],
|
| 171 |
-
cop=question_data['cop'] if 'cop' in question_data else None,
|
| 172 |
-
exp=question_data['exp'] if 'exp' in question_data else None
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
return question
|
| 176 |
-
|
| 177 |
except Exception as e:
|
| 178 |
raise HTTPException(status_code=500, detail=str(e))
|
| 179 |
|
|
@@ -183,35 +211,42 @@ async def predict(request: QuestionRequest):
|
|
| 183 |
raise HTTPException(status_code=400, detail="Exactly 4 options are required")
|
| 184 |
|
| 185 |
try:
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
text = f"{request.question} {option}"
|
| 189 |
-
inputs.append(text)
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
| 193 |
padding=True,
|
| 194 |
truncation=True,
|
| 195 |
-
max_length=512
|
| 196 |
-
return_tensors="pt"
|
| 197 |
)
|
| 198 |
|
| 199 |
device = next(model.parameters()).device
|
| 200 |
-
|
| 201 |
|
|
|
|
| 202 |
with torch.no_grad():
|
| 203 |
-
outputs = model(
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
response = {
|
| 209 |
-
"
|
| 210 |
-
"
|
| 211 |
-
"
|
| 212 |
-
"probabilities": {
|
| 213 |
-
f"option_{i}": prob for i, prob in enumerate(probabilities)
|
| 214 |
-
}
|
| 215 |
}
|
| 216 |
|
| 217 |
return response
|
|
|
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from pydantic import BaseModel
|
| 4 |
import torch
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
import os
|
| 7 |
from datasets import load_dataset
|
| 8 |
import random
|
| 9 |
+
from typing import Optional, List, Tuple, Union
|
| 10 |
import gradio as gr
|
| 11 |
+
from contextlib import asynccontextmanager
|
| 12 |
|
| 13 |
+
# Global variables
|
| 14 |
+
model = None
|
| 15 |
+
tokenizer = None
|
| 16 |
+
dataset = None
|
| 17 |
+
|
| 18 |
+
@asynccontextmanager
|
| 19 |
+
async def lifespan(app: FastAPI):
|
| 20 |
+
# Startup: Load the model
|
| 21 |
+
global model, tokenizer, dataset
|
| 22 |
+
try:
|
| 23 |
+
# Load your fine-tuned model and tokenizer
|
| 24 |
+
model_name = os.getenv("MODEL_NAME", "rgb2gbr/BioXP-0.5B-MedMCQA")
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 27 |
+
|
| 28 |
+
# Load MedMCQA dataset
|
| 29 |
+
dataset = load_dataset("openlifescienceai/medmcqa")
|
| 30 |
+
|
| 31 |
+
# Move model to GPU if available
|
| 32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
+
model = model.to(device)
|
| 34 |
+
model.eval()
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error loading model: {str(e)}")
|
| 37 |
+
raise e
|
| 38 |
+
|
| 39 |
+
yield # This is where FastAPI serves the application
|
| 40 |
+
|
| 41 |
+
# Shutdown: Clean up resources if needed
|
| 42 |
+
if model is not None:
|
| 43 |
+
del model
|
| 44 |
+
if tokenizer is not None:
|
| 45 |
+
del tokenizer
|
| 46 |
+
if dataset is not None:
|
| 47 |
+
del dataset
|
| 48 |
+
torch.cuda.empty_cache()
|
| 49 |
+
|
| 50 |
+
app = FastAPI(lifespan=lifespan)
|
| 51 |
|
| 52 |
# Add CORS middleware for Gradio
|
| 53 |
app.add_middleware(
|
|
|
|
| 72 |
cop: Optional[int] = None # Correct option (0-3)
|
| 73 |
exp: Optional[str] = None # Explanation if available
|
| 74 |
|
| 75 |
+
def format_prompt(question: str, options: List[str]) -> str:
|
| 76 |
+
"""Format the prompt for the model"""
|
| 77 |
+
prompt = f"Question: {question}\n\nOptions:\n"
|
| 78 |
+
for i, opt in enumerate(options):
|
| 79 |
+
prompt += f"{chr(65+i)}. {opt}\n"
|
| 80 |
+
prompt += "\nAnswer:"
|
| 81 |
+
return prompt
|
| 82 |
|
| 83 |
+
def get_question(index: Optional[int] = None, random_question: bool = False, format: str = "api") -> Union[DatasetQuestion, Tuple[str, str, str, str, str]]:
|
| 84 |
+
"""
|
| 85 |
+
Get a question from the dataset.
|
| 86 |
+
Args:
|
| 87 |
+
index: Optional question index
|
| 88 |
+
random_question: Whether to get a random question
|
| 89 |
+
format: 'api' for DatasetQuestion object, 'gradio' for tuple
|
| 90 |
+
"""
|
| 91 |
+
if dataset is None:
|
| 92 |
+
raise Exception("Dataset not loaded")
|
| 93 |
+
|
| 94 |
+
if random_question:
|
| 95 |
+
index = random.randint(0, len(dataset['train']) - 1)
|
| 96 |
+
elif index is None:
|
| 97 |
+
raise ValueError("Either index or random_question must be provided")
|
| 98 |
+
|
| 99 |
+
question_data = dataset['train'][index]
|
| 100 |
+
|
| 101 |
+
if format == "gradio":
|
| 102 |
+
return (
|
| 103 |
+
question_data['question'],
|
| 104 |
+
question_data['opa'],
|
| 105 |
+
question_data['opb'],
|
| 106 |
+
question_data['opc'],
|
| 107 |
+
question_data['opd']
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
return DatasetQuestion(
|
| 111 |
+
question=question_data['question'],
|
| 112 |
+
opa=question_data['opa'],
|
| 113 |
+
opb=question_data['opb'],
|
| 114 |
+
opc=question_data['opc'],
|
| 115 |
+
opd=question_data['opd'],
|
| 116 |
+
cop=question_data['cop'] if 'cop' in question_data else None,
|
| 117 |
+
exp=question_data['exp'] if 'exp' in question_data else None
|
| 118 |
+
)
|
| 119 |
|
| 120 |
def predict_gradio(question: str, option_a: str, option_b: str, option_c: str, option_d: str):
|
| 121 |
"""Gradio interface prediction function"""
|
| 122 |
try:
|
| 123 |
options = [option_a, option_b, option_c, option_d]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
# Format the prompt
|
| 126 |
+
prompt = format_prompt(question, options)
|
| 127 |
+
|
| 128 |
+
# Tokenize the input
|
| 129 |
+
inputs = tokenizer(
|
| 130 |
+
prompt,
|
| 131 |
+
return_tensors="pt",
|
| 132 |
padding=True,
|
| 133 |
truncation=True,
|
| 134 |
+
max_length=512
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
device = next(model.parameters()).device
|
| 138 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 139 |
|
| 140 |
+
# Generate prediction
|
| 141 |
with torch.no_grad():
|
| 142 |
+
outputs = model.generate(
|
| 143 |
+
**inputs,
|
| 144 |
+
max_new_tokens=10,
|
| 145 |
+
num_return_sequences=1,
|
| 146 |
+
temperature=0.7,
|
| 147 |
+
do_sample=False,
|
| 148 |
+
pad_token_id=tokenizer.eos_token_id
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Decode the output
|
| 152 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 153 |
+
|
| 154 |
+
# Extract the answer from the prediction
|
| 155 |
+
answer = prediction.split("Answer:")[-1].strip()
|
| 156 |
|
| 157 |
# Format the output for Gradio
|
| 158 |
+
result = f"Model Output:\n{prediction}\n\n"
|
| 159 |
+
result += f"Extracted Answer: {answer}"
|
|
|
|
|
|
|
| 160 |
|
| 161 |
return result
|
| 162 |
|
| 163 |
except Exception as e:
|
| 164 |
return f"Error: {str(e)}"
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
# Create Gradio interface
|
| 167 |
with gr.Blocks(title="Medical MCQ Predictor") as demo:
|
| 168 |
gr.Markdown("# Medical MCQ Predictor")
|
|
|
|
| 189 |
)
|
| 190 |
|
| 191 |
random_btn.click(
|
| 192 |
+
fn=lambda: get_question(random_question=True, format="gradio"),
|
| 193 |
inputs=[],
|
| 194 |
outputs=[question, option_a, option_b, option_c, option_d]
|
| 195 |
)
|
|
|
|
| 197 |
# Mount Gradio app to FastAPI
|
| 198 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
@app.get("/dataset/question")
|
| 201 |
async def get_dataset_question(index: Optional[int] = None, random_question: bool = False):
|
| 202 |
"""Get a question from the MedMCQA dataset"""
|
| 203 |
try:
|
| 204 |
+
return get_question(index=index, random_question=random_question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
except Exception as e:
|
| 206 |
raise HTTPException(status_code=500, detail=str(e))
|
| 207 |
|
|
|
|
| 211 |
raise HTTPException(status_code=400, detail="Exactly 4 options are required")
|
| 212 |
|
| 213 |
try:
|
| 214 |
+
# Format the prompt
|
| 215 |
+
prompt = format_prompt(request.question, request.options)
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
# Tokenize the input
|
| 218 |
+
inputs = tokenizer(
|
| 219 |
+
prompt,
|
| 220 |
+
return_tensors="pt",
|
| 221 |
padding=True,
|
| 222 |
truncation=True,
|
| 223 |
+
max_length=512
|
|
|
|
| 224 |
)
|
| 225 |
|
| 226 |
device = next(model.parameters()).device
|
| 227 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 228 |
|
| 229 |
+
# Generate prediction
|
| 230 |
with torch.no_grad():
|
| 231 |
+
outputs = model.generate(
|
| 232 |
+
**inputs,
|
| 233 |
+
max_new_tokens=10,
|
| 234 |
+
num_return_sequences=1,
|
| 235 |
+
temperature=0.7,
|
| 236 |
+
do_sample=False,
|
| 237 |
+
pad_token_id=tokenizer.eos_token_id
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Decode the output
|
| 241 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 242 |
+
|
| 243 |
+
# Extract the answer from the prediction
|
| 244 |
+
answer = prediction.split("Answer:")[-1].strip()
|
| 245 |
|
| 246 |
response = {
|
| 247 |
+
"model_output": prediction,
|
| 248 |
+
"extracted_answer": answer,
|
| 249 |
+
"full_response": prediction
|
|
|
|
|
|
|
|
|
|
| 250 |
}
|
| 251 |
|
| 252 |
return response
|