Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,35 @@
|
|
| 1 |
import cv2
|
| 2 |
import easyocr
|
| 3 |
import gradio as gr
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Instance text detector
|
| 7 |
reader = easyocr.Reader(['en'], gpu=False)
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def text_extraction(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
text_ = reader.readtext(image)
|
| 11 |
|
| 12 |
threshold = 0.25
|
|
@@ -14,19 +37,19 @@ def text_extraction(image):
|
|
| 14 |
for t_, t in enumerate(text_):
|
| 15 |
bbox, text, score = t
|
| 16 |
|
| 17 |
-
|
| 18 |
-
cv2.rectangle(image, tuple(map(int, bbox[0])), tuple(map(int, bbox[2])), (255, 0, 0), 2)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
# Define Gradio interface
|
| 26 |
iface = gr.Interface(
|
| 27 |
fn=text_extraction,
|
| 28 |
inputs=gr.Image(),
|
| 29 |
-
outputs=["
|
| 30 |
)
|
| 31 |
|
| 32 |
# Launch the Gradio interface
|
|
|
|
| 1 |
import cv2
|
| 2 |
import easyocr
|
| 3 |
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
|
| 8 |
+
headers = {"Authorization": "Bearer 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"}
|
| 9 |
|
| 10 |
# Instance text detector
|
| 11 |
reader = easyocr.Reader(['en'], gpu=False)
|
| 12 |
|
| 13 |
+
|
| 14 |
+
def query(image):
|
| 15 |
+
image_data = np.array(image, dtype=np.uint8)
|
| 16 |
+
|
| 17 |
+
# Convert the image data to binary format (JPEG)
|
| 18 |
+
_, buffer = cv2.imencode('.jpg', image_data)
|
| 19 |
+
|
| 20 |
+
# Convert the binary data to bytes
|
| 21 |
+
binary_data = buffer.tobytes()
|
| 22 |
+
|
| 23 |
+
response = requests.post(API_URL, headers=headers, data=binary_data)
|
| 24 |
+
return response.json()
|
| 25 |
+
|
| 26 |
def text_extraction(image):
|
| 27 |
+
|
| 28 |
+
# Facial Expression Detection
|
| 29 |
+
global text_content
|
| 30 |
+
text_content = ''
|
| 31 |
+
facial_data = query(image)
|
| 32 |
+
|
| 33 |
text_ = reader.readtext(image)
|
| 34 |
|
| 35 |
threshold = 0.25
|
|
|
|
| 37 |
for t_, t in enumerate(text_):
|
| 38 |
bbox, text, score = t
|
| 39 |
|
| 40 |
+
text_content = text_content + ' ' + ' '.join(text)
|
|
|
|
| 41 |
|
| 42 |
+
if score > threshold:
|
| 43 |
+
cv2.rectangle(image, tuple(map(int, bbox[0])), tuple(map(int, bbox[2])), (0, 255, 0), 5)
|
| 44 |
|
| 45 |
+
#output the image
|
| 46 |
+
return image, text_content, facial_data
|
| 47 |
|
| 48 |
# Define Gradio interface
|
| 49 |
iface = gr.Interface(
|
| 50 |
fn=text_extraction,
|
| 51 |
inputs=gr.Image(),
|
| 52 |
+
outputs=[gr.Image(), gr.Textbox(label="Text Content"), gr.JSON(label="Facial Data")]
|
| 53 |
)
|
| 54 |
|
| 55 |
# Launch the Gradio interface
|