Spaces:
Running
on
A100
Running
on
A100
| import spaces | |
| import os | |
| import json | |
| import time | |
| import torch | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import gradio as gr | |
| from safetensors.torch import save_file | |
| from src.pipeline import FluxPipeline | |
| from src.transformer_flux import FluxTransformer2DModel | |
| from src.lora_helper import set_single_lora, set_multi_lora, unset_lora | |
| # Initialize the image processor | |
| base_path = "black-forest-labs/FLUX.1-dev" | |
| lora_base_path = "./models" | |
| pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16) | |
| transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16) | |
| pipe.transformer = transformer | |
| pipe.to("cuda") | |
| def clear_cache(transformer): | |
| for name, attn_processor in transformer.attn_processors.items(): | |
| attn_processor.bank_kv.clear() | |
| # Define the Gradio interface | |
| def single_condition_generate_image(spatial_img): | |
| """ | |
| Convert an image into a Studio Ghibli style image | |
| """ | |
| prompt = "Ghibli Studio style, Charming hand-drawn anime-style illustration" | |
| use_zero_init = False | |
| zero_steps = 1 | |
| control_type = "Ghibli" | |
| height = 768 | |
| width = 768 | |
| seed = 42 | |
| if control_type == "Ghibli": | |
| lora_path = os.path.join(lora_base_path, "Ghibli.safetensors") | |
| set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512) | |
| # Process the image | |
| spatial_imgs = [spatial_img] if spatial_img else [] | |
| image = pipe( | |
| prompt, | |
| height=int(height), | |
| width=int(width), | |
| guidance_scale=3.5, | |
| num_inference_steps=25, | |
| max_sequence_length=512, | |
| generator=torch.Generator("cpu").manual_seed(seed), | |
| subject_images=[], | |
| spatial_images=spatial_imgs, | |
| cond_size=512, | |
| use_zero_init=use_zero_init, | |
| zero_steps=int(zero_steps) | |
| ).images[0] | |
| clear_cache(pipe.transformer) | |
| return image | |
| # Define the Gradio interface components | |
| control_types = ["Ghibli"] | |
| # Create the Gradio Blocks interface | |
| with gr.Blocks() as demo: | |
| with gr.Tab("Ghibli Condition Generation"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| spatial_img = gr.Image(label="Ghibli Image", type="pil") # 上传图像文件 | |
| single_generate_btn = gr.Button("Generate Image") | |
| with gr.Column(): | |
| single_output_image = gr.Image(label="Generated Image") | |
| # Link the buttons to the functions | |
| single_generate_btn.click( | |
| single_condition_generate_image, | |
| inputs=[spatial_img], | |
| outputs=single_output_image | |
| ) | |
| # Launch the Gradio app | |
| demo.launch(mcp_server=True) |