Spaces:
Running
Running
| import gradio as gr | |
| import requests | |
| import json | |
| import huggingface_hub | |
| from huggingface_hub import HfApi | |
| import os | |
| HF_TOKEN = os.environ["HF_TOKEN"] | |
| HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} | |
| zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/" | |
| welcome_message = """ | |
| Hi! I'll help you **build a GPT**. You can say something like, "make a bot that gives advice on how to grow your startup." | |
| What would you like to make? | |
| """ | |
| welcome_preview_message = """ | |
| Welcome to **{}**! Say something like: | |
| "{}" | |
| """ | |
| # sample_response = """ | |
| # Certainly! Here we go: | |
| # Title: Recipe Recommender | |
| # System Prompt: Utilize your language model abilities to suggest delicious recipes based on user preferences such as ingredients, cuisine type, cooking time, etc. Ensure accuracy and variety while maintaining a conversational style with the user. | |
| # Example User Input: Vegetarian dinner ideas under 30 minutes | |
| # """ | |
| zephyr_system_prompt = """ | |
| You are an AI whose job it is to help users create their own chatbots. In particular, you need to respond succintly in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. Make sure each part is included. | |
| For example, if a user says, "make a bot that gives advice on how to grow your startup", first do a friendly response, then add the title, system prompt, and example user input. Immediately STOP after the example input. It should be EXACTLY in this format: | |
| Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! | |
| Title: Startup Coach | |
| System prompt: Your job as an LLM is to provide good startup advice. Do not provide extraneous comments on other topics. Be succinct but useful. | |
| Example input: Risks of setting up a non-profit board | |
| Here's another example. If a user types, "Make a chatbot that roasts tech ceos", respond: | |
| Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! | |
| Title: Tech Roaster | |
| System prompt: As an LLM, your primary function is to deliver hilarious and biting critiques of technology CEOs. Keep it witty and entertaining, but also make sure your jokes aren't too mean-spirited or factually incorrect. | |
| Example input: Elon Musk | |
| """ | |
| def build_input_prompt(message, chatbot, system_prompt): | |
| """ | |
| Constructs the input prompt string from the chatbot interactions and the current message. | |
| """ | |
| input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n" | |
| for interaction in chatbot: | |
| input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n" | |
| input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>" | |
| return input_prompt | |
| def post_request_beta(payload): | |
| """ | |
| Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response. | |
| """ | |
| response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload) | |
| response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code | |
| return response.json() | |
| def predict_beta(message, chatbot=[], system_prompt=zephyr_system_prompt): | |
| input_prompt = build_input_prompt(message, chatbot, system_prompt) | |
| data = { | |
| "inputs": input_prompt | |
| } | |
| try: | |
| response_data = post_request_beta(data) | |
| json_obj = response_data[0] | |
| if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0: | |
| bot_message = json_obj['generated_text'] | |
| return bot_message | |
| elif 'error' in json_obj: | |
| raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt') | |
| else: | |
| warning_msg = f"Unexpected response: {json_obj}" | |
| raise gr.Error(warning_msg) | |
| except requests.HTTPError as e: | |
| error_msg = f"Request failed with status code {e.response.status_code}" | |
| raise gr.Error(error_msg) | |
| except json.JSONDecodeError as e: | |
| error_msg = f"Failed to decode response as JSON: {str(e)}" | |
| raise gr.Error(error_msg) | |
| def extract_title_prompt_example(text, title, system_prompt, example_input): | |
| try: | |
| # Finding the indices of the key terms | |
| text_start = text.rfind("<|assistant|>", ) + len("<|assistant|>") | |
| text = text[text_start:] | |
| except ValueError: | |
| pass | |
| try: | |
| title_start = text.lower().rfind("title:") + len("title:") | |
| prompt_start = text.lower().rfind("system prompt:") | |
| title = text[title_start:prompt_start].strip() | |
| except ValueError: | |
| pass | |
| try: | |
| prompt_start = text.lower().rfind("system prompt:") + len("system prompt:") | |
| example_start = text.lower().rfind("example input:") | |
| system_prompt = text[prompt_start:example_start].strip() | |
| except ValueError: | |
| pass | |
| try: | |
| example_start = text.lower().rfind("example input:") + len("example input:") | |
| example_input = text[example_start:].strip() | |
| example_input = example_input[:example_input.index("\n")] | |
| except ValueError: | |
| pass | |
| return text, title, system_prompt, example_input | |
| def make_open_gpt(message, history, current_title, current_system_prompt, current_example_input): | |
| response = predict_beta(message, history, zephyr_system_prompt) | |
| response, title, system_prompt, example_input = extract_title_prompt_example(response, current_title, current_system_prompt, current_example_input) | |
| return "", history + [(message, response)], title, system_prompt, example_input, [(None, welcome_preview_message.format(title, example_input))], example_input, gr.Column(visible=True), gr.Group(visible=True) | |
| def set_title_example(title, example): | |
| return [(None, welcome_preview_message.format(title, example))], example, gr.Column(visible=True), gr.Group(visible=True) | |
| chatbot_preview = gr.Chatbot(layout="panel") | |
| textbox_preview = gr.Textbox(scale=7, container=False) | |
| def test_preview_chatbot(message, history, system_prompt): | |
| response = predict_beta(message, history, system_prompt) | |
| text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>") | |
| response = response[text_start:] | |
| return response | |
| def strip_invalid_filename_characters(filename: str, max_bytes: int = 200) -> str: | |
| """Strips invalid characters from a filename and ensures that the file_length is less than `max_bytes` bytes.""" | |
| filename = filename.replace(" ", "-") | |
| filename = "".join([char for char in filename if char.isalnum() or char in "_-"]) | |
| filename_len = len(filename.encode()) | |
| if filename_len > max_bytes: | |
| while filename_len > max_bytes: | |
| if len(filename) == 0: | |
| break | |
| filename = filename[:-1] | |
| filename_len = len(filename.encode()) | |
| return filename | |
| constants = """ | |
| SYSTEM_PROMPT = "{}" | |
| TITLE = "{}" | |
| EXAMPLE_INPUT = "{}" | |
| """ | |
| def publish(textbox_system_prompt, textbox_title, textbox_example, textbox_token): | |
| source_file = 'app_template.py' | |
| destination_file = 'app.py' | |
| constants_formatted = constants.format(textbox_system_prompt, textbox_title, textbox_example) | |
| with open(source_file, 'r') as file: | |
| original_content = file.read() | |
| with open(destination_file, 'w') as file: | |
| file.write(constants_formatted + original_content) | |
| title = strip_invalid_filename_characters(textbox_title, max_bytes=30) | |
| api = HfApi(token=textbox_token) | |
| new_space = api.create_repo( | |
| repo_id=f"open-gpt-{title}", | |
| repo_type="space", | |
| exist_ok=True, | |
| private=False, | |
| space_sdk="gradio", | |
| token=textbox_token, | |
| ) | |
| api.upload_file( | |
| repo_id=new_space.repo_id, | |
| path_or_fileobj='app.py', | |
| path_in_repo='app.py', | |
| token=textbox_token, | |
| repo_type="space", | |
| ) | |
| api.upload_file( | |
| repo_id=new_space.repo_id, | |
| path_or_fileobj='README_template.md', | |
| path_in_repo='README.md', | |
| token=textbox_token, | |
| repo_type="space", | |
| ) | |
| huggingface_hub.add_space_secret( | |
| new_space.repo_id, "HF_TOKEN", textbox_token, token=textbox_token | |
| ) | |
| return gr.Markdown(f"Published to https://huggingface.co/spaces/{new_space.repo_id} β ", visible=True), gr.Button("Publish", interactive=True) | |
| css = """ | |
| #preview-tab-button{ | |
| font-weight: bold; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("π₯§ **GPT Baker** lets you create your own **open-source GPTs**. Start chatting below to automatically bake your GPT (or you can manually configure the recipe in the second tab). You can build and test them for free, but will need a [HF Pro account](https://huggingface.co/subscribe/pro) to publish them on Spaces (as Open GPTs are powered by the Zephyr 7B beta model using the HF Inference API). You will **not be charged** for usage of your Open GPT as the HF Inference API Pro membership does not charge per-query. Find your token here: https://huggingface.co/settings/tokens") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| with gr.Tab("Create"): | |
| chatbot_maker = gr.Chatbot([(None, welcome_message)], layout="panel", elem_id="chatbot-maker") | |
| with gr.Group(): | |
| with gr.Row(): | |
| textbox_maker = gr.Textbox(placeholder="Make a bot that roasts tech CEOs", scale=7, container=False, autofocus=True) | |
| submit_btn = gr.Button("Bake π©βπ³", variant="secondary") | |
| with gr.Tab("Configure Recipe"): | |
| textbox_title = gr.Textbox("GPT Preview", label="Title") | |
| textbox_system_prompt = gr.Textbox(label="System prompt", lines=6) | |
| textbox_example = gr.Textbox(label="Placeholder example", lines=2) | |
| with gr.Tab("Files"): | |
| gr.Markdown("RAG coming soon!") | |
| with gr.Column(visible=False, scale=5) as preview_column: | |
| with gr.Tab("πͺ Preview of your Open GPT", elem_id="preview-tab") as preview_tab: | |
| gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, autofocus=False, submit_btn="Test", additional_inputs=[textbox_system_prompt]) | |
| with gr.Group(visible=False) as publish_row: | |
| with gr.Row(): | |
| textbox_token = gr.Textbox(show_label=False, placeholder="Ready to publish to Spaces? Enter your HF token here", scale=7) | |
| publish_btn = gr.Button("Publish", variant="primary") | |
| published_status = gr.Markdown(visible=False) | |
| gr.on([submit_btn.click, textbox_maker.submit], make_open_gpt, [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example], [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example, chatbot_preview, textbox_preview, preview_column, publish_row]) | |
| gr.on([textbox_title.blur, textbox_example.blur], set_title_example, [textbox_title, textbox_example], [chatbot_preview, textbox_preview, preview_column, publish_row]) | |
| publish_btn.click(lambda : gr.Button("Publishing...", interactive=False), None, publish_btn).then(publish, [textbox_system_prompt, textbox_title, textbox_example, textbox_token], [published_status, publish_btn]) | |
| demo.launch() |