Spaces:
Runtime error
Runtime error
Commit
Β·
6af949b
1
Parent(s):
bf18e02
Add Ada
Browse files
app.py
CHANGED
|
@@ -195,6 +195,8 @@ def add_task(examples):
|
|
| 195 |
|
| 196 |
for model in EXTERNAL_MODELS:
|
| 197 |
ds = load_dataset("mteb/results", model)
|
|
|
|
|
|
|
| 198 |
ds = ds.map(add_lang)
|
| 199 |
ds = ds.map(add_task)
|
| 200 |
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
|
|
@@ -205,7 +207,7 @@ for model in EXTERNAL_MODELS:
|
|
| 205 |
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
|
| 206 |
|
| 207 |
|
| 208 |
-
def get_mteb_data(tasks=["Clustering"], langs=[], task_to_metric=TASK_TO_METRIC):
|
| 209 |
api = HfApi()
|
| 210 |
models = api.list_models(filter="mteb")
|
| 211 |
# Initialize list to models that we cannot fetch metadata from
|
|
@@ -253,7 +255,8 @@ def get_mteb_data(tasks=["Clustering"], langs=[], task_to_metric=TASK_TO_METRIC)
|
|
| 253 |
cols = sorted(list(df.columns))
|
| 254 |
cols.insert(0, cols.pop(cols.index("Model")))
|
| 255 |
df = df[cols]
|
| 256 |
-
|
|
|
|
| 257 |
return df
|
| 258 |
|
| 259 |
def get_mteb_average():
|
|
@@ -269,6 +272,7 @@ def get_mteb_average():
|
|
| 269 |
"Summarization",
|
| 270 |
],
|
| 271 |
langs=["en", "en-en"],
|
|
|
|
| 272 |
)
|
| 273 |
# Approximation (Missing Bitext Mining & including some nans)
|
| 274 |
NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
|
|
@@ -290,6 +294,9 @@ def get_mteb_average():
|
|
| 290 |
|
| 291 |
DATA_OVERALL = DATA_OVERALL.round(2)
|
| 292 |
|
|
|
|
|
|
|
|
|
|
| 293 |
DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
|
| 294 |
DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
|
| 295 |
DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
|
|
|
|
| 195 |
|
| 196 |
for model in EXTERNAL_MODELS:
|
| 197 |
ds = load_dataset("mteb/results", model)
|
| 198 |
+
# For local debugging:
|
| 199 |
+
#, download_mode='force_redownload', ignore_verifications=True)
|
| 200 |
ds = ds.map(add_lang)
|
| 201 |
ds = ds.map(add_task)
|
| 202 |
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
|
|
|
|
| 207 |
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
|
| 208 |
|
| 209 |
|
| 210 |
+
def get_mteb_data(tasks=["Clustering"], langs=[], fillna=True, task_to_metric=TASK_TO_METRIC):
|
| 211 |
api = HfApi()
|
| 212 |
models = api.list_models(filter="mteb")
|
| 213 |
# Initialize list to models that we cannot fetch metadata from
|
|
|
|
| 255 |
cols = sorted(list(df.columns))
|
| 256 |
cols.insert(0, cols.pop(cols.index("Model")))
|
| 257 |
df = df[cols]
|
| 258 |
+
if fillna:
|
| 259 |
+
df.fillna("", inplace=True)
|
| 260 |
return df
|
| 261 |
|
| 262 |
def get_mteb_average():
|
|
|
|
| 272 |
"Summarization",
|
| 273 |
],
|
| 274 |
langs=["en", "en-en"],
|
| 275 |
+
fillna=False
|
| 276 |
)
|
| 277 |
# Approximation (Missing Bitext Mining & including some nans)
|
| 278 |
NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
|
|
|
|
| 294 |
|
| 295 |
DATA_OVERALL = DATA_OVERALL.round(2)
|
| 296 |
|
| 297 |
+
# Fill NaN after averaging
|
| 298 |
+
DATA_OVERALL.fillna("", inplace=True)
|
| 299 |
+
|
| 300 |
DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
|
| 301 |
DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
|
| 302 |
DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
|